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A B S T R A C T

An important aspect of network-based analysis is robust node definition. This issue is critical for functional brain
network analyses, as poor node choice can lead to spurious findings and misleading inferences about functional
brain organization. Two sets of functional brain nodes from our group are well represented in the literature: (1)
264 volumetric regions of interest (ROIs) reported in Power et al., 2011, and (2) 333 cortical surface parcels
reported in Gordon et al., 2016. However, subcortical and cerebellar structures are either incompletely captured
or missing from these ROI sets. Therefore, properties of functional network organization involving the subcortex
and cerebellum may be underappreciated thus far. Here, we apply a winner-take-all partitioning method to
resting-state fMRI data to generate novel functionally-constrained ROIs in the thalamus, basal ganglia, amygdala,
hippocampus, and cerebellum. We validate these ROIs in three datasets using several criteria, including agree-
ment with existing literature and anatomical atlases. Further, we demonstrate that combining these ROIs with
established cortical ROIs recapitulates and extends previously described functional network organization. This
new set of ROIs is made publicly available for general use, including a full list of MNI coordinates and functional
network labels.
1. Introduction

The brain is organized into areas that interact with one another to
form distributed large-scale networks (Allman and Kaas, 1971; Felleman
and Van Essen, 1991; Petersen and Sporns, 2015). Researchers studying
the brain at the network level have revealed both basic principles of brain
organization (Bassett and Bullmore, 2006; Honey et al., 2007; Power
et al., 2011; Sporns et al., 2004; Van den Heuvel and Sporns, 2011; Yeo
et al., 2011) and insights into neurologic and psychiatric diseases (Cor-
betta and Shulman, 2011; Kim et al., 2014; Seeley et al., 2009; Sorg et al.,
2007). Much of this work has borrowed concepts and tools from the field
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of graph theory in order to model the brain as a network (Bullmore and
Sporns, 2009; Sporns, 2011). A graph is a mathematical description of a
network, which comprises a set of elements (nodes) and their pairwise
relationships (edges; Bondy and Murty, 1976). Therefore, network ap-
proaches require the definition of a set of nodes, such as regions of in-
terest (ROIs) in the case of brain networks.

Ideally, nodes should be internally coherent (e.g., functionally ho-
mogeneous) and independent, separable units (Bullmore and Bassett,
2011; Butts, 2009, 2008; Wig et al., 2011). Brain areas and their con-
stituent components—local circuits, columns, and domains (Kaas,
2012)—display many of these properties, and thus, are suitable nodes for
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brain network analysis. Research efforts focused on node definition often
employ data-driven techniques to parcellate the cerebral cortex into a set
of ROIs meant to represent putative functionally homogeneous brain
areas (Cohen et al., 2008; Craddock et al., 2012; Glasser et al., 2016;
Gordon et al., 2016; Nelson et al., 2010; Power et al., 2011; Schaefer
et al., 2017; Wig et al., 2013). Most such studies have used resting-state
functional connectivity MRI, which measures correlations in
low-frequency blood-oxygen-level-dependent (BOLD) signals across the
whole brain while subjects remain awake and alert without engaging in
an explicit task (Biswal et al., 1995; Gusnard and Raichle, 2001; Snyder
and Raichle, 2012). While many of these existing sets of ROIs sample the
cortex quite well, most approaches have under-sampled or completely
omitted the subcortex and cerebellum (but see Ji et al., 2019).

The poorer representation of these structures is a limitation of pre-
vious work, as closed loop anatomical circuits connect the subcortex and
cerebellum to the cortex (Woolsey et al., 2008). In addition, these
structures are known to be integral for many behavioral, cognitive, and
affective functions. For example, regions of the cerebellum are involved
in adaptive behaviors (Thach et al., 1992), including fast adaptations,
like eye-blink conditioning (Steinmetz et al., 1992), as well as those that
occur over longer timescales, like prism adaptation (Morton and Bastian,
2004), and higher order cognitive functions, such as semantic processing
(Fiez, 2016; Guell et al., 2018). Likewise, regions of the basal ganglia and
thalamus are important for both lower level sensory and higher order
cognitive functions (Alexander et al., 1986; Jones, 1985). Furthermore,
subcortical structures and the cerebellum have been implicated in a va-
riety of neurologic and psychiatric diseases. For instance, the basal
ganglia are affected in several movement disorders (Greene et al., 2017,
2013; Rajput, 1993; Vonsattel et al., 1985), the hippocampus is disrupted
in Alzheimer Disease (Hardy and Selkoe, 2002), the amygdala is impli-
cated in Major Depressive Disorder (Frodl et al., 2002) and
Urbach-Wiethe Disease (Siebert et al., 2003), and the cerebellum is
affected in Schizophrenia (Andreasen et al., 1996; Bigelow et al., 2006;
Brown et al., 2005; Kim et al., 2014) and Autism Spectrum Disorder
(Fatemi et al., 2002), to name a few. Moreover, interactions between the
cortex and both subcortical and cerebellar regions are crucial for carrying
out functions in health (Bostan and Strick, 2018; Greene et al., 2014;
Hwang et al., 2017; Kiritani et al., 2012) and disease (Andreasen et al.,
1999; Gratton et al., 2018a; Schmahmann, 2004). Because of these in-
teractions between multiple structures, it has been postulated that
subcortical regions may have important hub-like properties for inte-
grating brain systems (Hwang et al., 2017) and may constrain
network-level topology (Bell and Shine, 2016; Garrett et al., 2018). Thus,
brain network analyses should include these important regions in order
to have a more complete picture of brain organization and function.

An issue potentially impeding the inclusion of these regions is that
subcortical and deep cerebellar nuclei are small relative to the spatial
resolution of fMRI, often occupying just a few voxels, whereas brain areas
in the cerebral cortex (e.g. Area V1) are typically larger. Furthermore,
depending on the acquisition sequence, these regions may have lower
signal quality (Ojemann et al., 1997) or, especially for the cerebellum,
may be captured incompletely. Finally, most existing techniques for
parcellating the brain into areas, such as gradient-based techniques
(Cohen et al., 2008; Gordon et al., 2016; Nelson et al., 2010; Wig et al.,
2013), were designed for the cortical surface, making them less easily
applied to structures where surface-based mapping is less appropriate
(basal ganglia, thalamus), prone to error (medial temporal lobe) (Wisse
et al., 2014), or less well-established (cerebellum). Despite these diffi-
culties, inclusion of the subcortex and cerebellum is crucial to properly
represent the brain as a network. While there are existing anatomical
atlases of the subcortex (Morel, 2013) and cerebellum (Diedrichsen et al.,
2009), functionally defined regions may complement anatomical ones
and provide a better correspondence to functionally defined cortical
areas and task-based measures from fMRI.

Our lab previously published two (now widely used) sets of ROIs: (1)
264 volumetric ROIs (Power et al., 2011) and (2) 333 surface-based
2

cortical parcels (Gordon et al., 2016). The first set was created via
combined task fMRI meta-analysis and resting-state functional correla-
tion mapping, and the second was created via a gradient-based parcel-
lation of resting-state fMRI data. These two ROI sets sample the cortex
well, representing a diverse set of brain areas that can be organized into
functional networks. Many investigators have used them to describe
functional brain organization in a variety of healthy samples (Power
et al., 2013; Zanto and Gazzaley, 2013), lifespan cohorts (Baniqued et al.,
2018; Gallen et al., 2016; Gu et al., 2015; Nielsen et al., 2018; Rudolph
et al., 2017), as well as populations with neurologic and psychiatric
diseases (Gratton et al., 2018a; Greene et al., 2016; Sheffield et al., 2015;
Siegel et al., 2018). However, the first set (264 volumetric ROIs)
under-samples subcortical and cerebellar structures, as only 17 ROIs are
non-cortical, and the second set (333 parcels) is restricted to the cortex
only, similar to other popular ROI sets, e.g. (Glasser et al., 2016; Yeo
et al., 2011).

The goal of the current study was to expand these ROI sets to better
represent subcortical and cerebellar structures. Novel ROIs were created
in the thalamus, basal ganglia, and cerebellum by use of a data-driven,
winner-take-all partitioning technique that operates on resting-state
fMRI data (Choi et al., 2012; Greene et al., 2014; Zhang et al., 2010).
Additional ROIs were generated in the amygdala and hippocampus, and
all ROIs were validated via several criteria. Finally, we characterized
whole-brain functional network organization using these refined
subcortical and cerebellar ROIs combined with previously established
cortical ROIs. The fully updated set of ROIs is made publicly available for
general use, including a list of coordinates and consensus functional
network labels, on the Greene lab website.

2. Material and methods

2.1. Primary dataset- WashU 120

2.1.1. Dataset characteristics
The primary dataset used in this study has been described previously

(Power et al., 2011). Eyes-open resting-state fMRI data were acquired
from 120 healthy, right-handed, native English speaking, young adults
(60 F, age range 18–32, mean age 24.7 years). Subjects were recruited
from the Washington University community and screened with a
self-report questionnaire. Exclusion criteria included no current or pre-
vious history of neurologic or psychiatric diagnosis as well as no head
injuries resulting in a loss of consciousness for more than 5min. Informed
consent was obtained from all participants, and the Washington Uni-
versity Internal Review Board approved the study. The data are available
at https://legacy.openfmri.org/dataset/ds000243/.

2.1.2. Data acquisition
A Siemens MAGNETOM Tim TRIO 3.0T MRI scanner and a 12-

channel Head Matrix Coil were used to obtain T1-weighted (MP-RAGE,
2.4 s TR, 1x1x1mm voxels) and BOLD contrast sensitive (gradient-echo
EPI, 2.5 s TR, 4x4x4mm voxels) images from each subject. The mean
amount of BOLD data acquired per subject was 14 min (336 frames,
range¼ 184–729 frames). Subjects were instructed to fixate on a black
crosshair presented at the center of a white background. See Power et al.,
2011 for full acquisition details.

2.1.3. Preprocessing
The first 12 frames (30 s) of each functional run were discarded to

account for magnetization equilibrium and an auditory evoked response
at the start of the EPI sequence (Laumann et al., 2015). Slice timing
correction was applied first. Then, the functional data were aligned to the
first frame of the first run using rigid body transforms, motion corrected
(3D-cross realigned), and whole-brain mode 1000 normalized (Miezin
et al., 2000). Next, the data were resampled (3x3x3mm voxels) and
registered to the T1-weighted image and then to a WashU Talairach atlas
(Ojemann et al., 1997) using affine transforms in a one-step operation

https://legacy.openfmri.org/dataset/ds000243/
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(Smith et al., 2004).
Additional preprocessing of the resting-state BOLD data was applied

to remove artifacts (Ciric et al., 2017; Power et al., 2014). Frame-wise
displacement (FD) was calculated as in Power et al. (2012), and frames
with FD greater than 0.2 mm were censored. Uncensored segments with
fewer than 5 contiguous frames were censored as well (mean� std
frames retained¼ 279�107). All censored frames were interpolated over
using least squares spectral estimation (Hocke and K€ampfer, 2009; Power
et al., 2014). Next, the data were bandpass filtered from 0.009 to 0.08 Hz
and nuisance regression was implemented. The regression included 36
regressors: the whole-brain mean, individually defined white matter and
ventricular CSF signals, the temporal derivatives of each of these re-
gressors, and an additional 24 movement regressors derived by expan-
sion (Friston et al., 1996; Satterthwaite et al., 2012; Yan et al., 2013).
FreeSurfer 5.3 automatic segmentation was applied to the T1-weighted
images to create masks of the gray matter, white matter, and ventricles
for the individual-specific regressors (Fischl et al., 2002). Finally, the
data were smoothed with a Gaussian smoothing kernel (FWHM¼ 6mm,
sigma¼ 2.55).

At the end of all processing, each censored/interpolated frame was
removed from the time series for all further analyses.

2.2. Secondary dataset- HCP 80

2.2.1. Dataset characteristics
Due to a partial cutoff of cerebellar data in over half of the subjects in

the primary dataset (outside of the field of view), an independent sec-
ondary dataset was used to supplement analyses related to the cere-
bellum. Since the cerebellum was not cutoff in every subject in the
primary dataset, we were able to create a cerebellar portion of the group
average matrix derived from just those subjects with full cerebellar
coverage. We used data from 80 unrelated individuals from the Human
Connectome Project (HCP) 500 Subject Release (40F, age range 22–35,
mean age 28.4 years) who had high-quality (low-motion) data, described
previously (Gordon et al., 2017a). All HCP data are available at
https://db.humanconnectome.org.

2.2.2. Data acquisition
A custom Siemens SKYRA 3.0T MRI scanner and a custom 32-channel

Head Matrix Coil were used to obtain high-resolution T1-weighted (MP-
RAGE, 2.4 s TR, 0.7x0.7� 0.7mm voxels) and BOLD contrast sensitive
(gradient-echo EPI, multiband factor 8, 0.72 s TR, 2x2x2mm voxels)
images from each subject. The HCP used sequences with left-to-right (LR)
and right-to-left (RL) phase encoding, with a single RL and LR run on
each day for two consecutive days for a total of four runs (Van Essen
et al., 2012). Thus, for symmetry, the BOLD time series from each sub-
ject’s best (most frames retained after censoring) LR run and their best RL
run were concatenated together.

2.2.3. Preprocessing
The preprocessing steps were the same as those detailed in Section

2.1.3 except for the following: (1) the first 41 frames (29.52 s) of each run
were discarded, (2) no slice timing correction was applied, (3) field in-
homogeneity distortion correction was applied (using the mean field
map), (4) the data were not resampled (voxel size remained 2x2x2mm),
and (5) the Gaussian smoothing kernel was smaller (FWHM¼ 4mm,
sigma¼ 1.7). The first two changes are due to the increased temporal
resolution of the HCP data acquisition (0.72 s TR) and the last two
changes are due to the increased spatial resolution of HCP data acquisi-
tion (Glasser et al., 2013). Distortion correction was not applied to the
primary dataset because field maps were not collected in most partici-
pants. In addition, the increased temporal resolution caused respiration
artifacts to alias into the FD estimates (Fair et al., 2018; Siegel et al.,
2017). Thus, FD values were filtered with a lowpass filter at 0.1 Hz and
the filtered FD threshold was set at 0.1 mm (mean� std frames
retained¼ 2236�76).
3

For the purpose of the winner-take-all partitioning of the secondary
dataset (described in section 2.4), a CIFTI was created for each subject.
Thus, preprocessed cortical BOLD time series data (from the secondary
dataset only) were mapped to the surface, following the procedure of
Gordon et al. (2016), and combined with volumetric subcortical and
cerebellar data in the CIFTI format (Glasser et al., 2013; Gordon et al.,
2016).

At the end of all processing, each censored/interpolated frame was
removed from the time series for all further analyses.

2.3. Validation dataset- MSC

2.3.1. Dataset characteristics
Since the primary and secondary datasets were used to create the

subcortical and cerebellar ROIs (described in section 2.5), results for
functional network community assignment (described in section 2.7)
were validated with a third independent dataset, the Midnight Scan Club
(MSC), described previously (Gordon et al., 2017b). These data are
available at https://openneuro.org/datasets/ds000224/versions/00002.
The MSC dataset consists of 5 h of resting-state BOLD data from each of
10 individuals (5F, age range 24–34, mean age 29) over a two-week
period.

2.3.2. Data acquisition
The same scanner, head coil, and acquisition parameters described in

Section 2.1.2 were used to for the MSC. However, a single resting-state
run lasting 30 min was collected on each of 10 separate days. Each
scan was acquired starting at midnight (Gordon et al., 2017b).

2.3.3. Preprocessing
For each subject, all runs were concatenated together in the order that

they were collected. The initial preprocessing steps were the same as
those detailed in Section 2.1.3 except for the following: (1) the functional
images were registered to the average T2-weighted anatomical image (4
were collected per subject), then to the average T1-weighted anatomical
image (4 were collected per subject), and finally to the Talairach atlas,
(2) field inhomogeneity distortion correction was applied (using the
mean field map), and (3) one subject (MSC08) was excluded due to a
substantial amount of low-quality data and self-reported sleeping during
acquisition, as detailed previously (Gordon et al., 2017b; Laumann et al.,
2016).

Additional preprocessing followed Raut and colleagues (Raut et al.,
2019). Again, FD was used to exclude high-motion frames; however, due
to respiratory artifacts affecting the realignment parameters (Power
et al., 2018; Siegel et al., 2017), a lowpass filter (0.1 Hz) was applied to
those parameters before calculation of FD. Consequently, the threshold
for frame censoring was lowered to 0.1mm. Frames with outstanding
(>2.5 standard deviations above the mode computed across all runs)
DVARS values (as calculated in Power et al., 2012) were also excluded.
All censored frames were linearly interpolated, and then a bandpass filter
(0.005–0.1 Hz) was applied.

Finally, component-based nuisance regression was implemented.
Individual-specific FreeSurfer 6.0 segmentation was used to define masks
of the gray matter, white matter, and ventricles. A mask of extra-axial (or
edge; Patriat et al., 2015) voxels was also created by thresholding the
temporal standard deviation image (>2.5%) that excluded the eyes and a
dilated whole-brain mask. BOLD data was extracted from all voxels in
each mask (separately), and dimensionality reduction was applied as in
CompCor (Behzadi et al., 2007). The number of components retained was
determined independently for each mask such that the condition number
(i.e., the maximum eigenvalue divided by the minimum eigenvalue) was
greater than 30. All retained components were submitted to a regressors
matrix that also included the 6 realignment parameters. To avoid
collinearity, singular value decomposition was applied to the regressors
covariance matrix. Components of this decomposition were retained up
to an upper limit (condition number � 250). Then, all of the final

https://db.humanconnectome.org
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retained components, the whole-brain mean, and its temporal derivative
were regressed from the BOLD time series (Raut et al., 2019).

At the end of all processing, each censored/interpolated frame was
removed from the time series for all further analyses.

2.4. Winner-take-all partitioning of the subcortex and cerebellum

In order to identify functional subdivisions within subcortical struc-
tures and the cerebellum, a winner-take-all partitioning technique was
applied to the basal ganglia, thalamus, and cerebellum, as previously
described (Greene et al., 2014). Past applications of this winner-take-all
approach have yielded results consistent with known connectivity from
the animal literature (Buckner et al., 2011; Choi et al., 2012; Fair et al.,
2010; Greene et al., 2014; Zhang et al., 2008).

Briefly, the mean resting-state time series were extracted from each of
11 previously defined cortical networks (Power et al., 2011): default
mode, frontoparietal, cinguloopercular, salience, dorsal attention,
ventral attention, visual, auditory, somatomotor dorsal, somatomotor
lateral, and orbitofrontal. This subset of networks (from the original 15
described in Power et al., 2011) was selected on the basis of being pre-
viously well characterized and validated by multiple methods (see Yeo
et al., 2011; Greene et al., 2014). In order to remove the shared variance
among cortical networks thereby increasing specificity of the
subcortico-cortical and cerebello-cortical correlations, partial correla-
tions were then calculated between the time series from each cortical
network and the resting-state time series from each subcortical or cere-
bellar gray matter voxel (e.g., for each cortical network and subcortical
voxel, a residual correlation was computed after partialling out the signal
from the other cortical networks). Each voxel was then assigned to the
network with which it correlated most in a winner-take-all fashion
(Buckner et al., 2011; Choi et al., 2012; Greene et al., 2014; Zhang et al.,
2010), generating a functional partition of subcortical and cerebellar
structures.

2.5. ROI creation

Spherical ROIs (diameter¼ 8 mm) were placed in the (volumetric)
center of each of the winner-take-all partitions in the basal ganglia,
thalamus, and cerebellum. Then, the ROIs were manually adjusted such
that (1) all ROIs included only gray matter voxels and (2) no ROIs had
any overlapping voxels. If an ROI did not fit entirely within a single
winner-take-all partition, it was excluded. Two additional ROIs (one per
hemisphere) were added to the center of the amygdala, since the entire
structure was assigned to a single network (default mode) via the winner-
take-all approach. The winner-take-all approach also assigned the entire
hippocampus to a single network (default mode). However, given pre-
vious evidence for distinct functional connectivity profiles for the ante-
rior and posterior portions of the hippocampus (Kahn et al., 2008), we
added four ROIs (two per hemisphere) to sample the anterior and pos-
terior hippocampus. In total, 34 subcortical and 27 cerebellar ROIs were
created.

These new subcortical and cerebellar ROIs were then combined with
two previously described sets of cortical ROIs from our lab, as follows:

ROI Set 1 (Power 264 þ new): Spherical cortical ROIs were used from
the 264 volumetric ROIs reported in (Power et al., 2011). Four of these
ROIs in the medial temporal lobe (two per hemisphere) were removed
(Talairach coordinates: (�20, �24, �18), (17, �30, �15), (�25, �41,
�8), (26, �39, �11)) and replaced by the four new hippocampal ROIs,
due to some overlapping voxels. In addition, the 17 subcortical and
cerebellar ROIs from the original 264 were replaced by 55 new subcor-
tical and cerebellar ROIs. Finally, the 2 new amygdala ROIs were added.
Thus, ROI Set 1 is composed of 239 cortical, 34 subcortical (including the
amygdala and hippocampus), and 27 cerebellar volumetric ROIs, for a
total of 300 ROIs.

ROI Set 2 (Gordon 333 þ new): ROI set 2 was generated by combining
the 333 surface-based cortical parcels (Gordon et al., 2016) with the
4

newly generated subcortical and cerebellar ROIs. Thus, ROI Set 2 is
composed of 333 surface-based cortical parcels and 34 subcortical
(including the amygdala and hippocampus) and 27 cerebellar
volumetric ROIs, for a total of 394 ROIs. For all analyses using this
ROI set, we utilized the center of each cortical parcel projected into
volumetric atlas space (Gordon et al., 2016). The parcels in this format
are publicly available at https://sites.wustl.edu/petersenschlaggarl
ab/parcels-19cwpgu/.

2.6. Seedmaps and consensus functional network communities for each
ROI

2.6.1. Seedmaps
To validate the winner-take-all assignments of voxels used for ROI

placement, we first conducted seedmap analyses to examine how each
ROI was correlated with every other gray matter voxel. A seedmap rep-
resents the pattern of correlations between the mean BOLD time series
from a given ROI and all other gray matter voxels in the brain. We
generated group-average seedmaps for both ROI Sets and each dataset
(primary, secondary, validation). The preprocessed BOLD time series for
each gray matter voxel within each ROI were averaged together (after
removing censored and interpolated frames). Then, the Pearson corre-
lation between each new ROI and every other gray matter voxel in the
brain was computed for each subject. The subject-specific maps were
Fisher Z transformed, averaged together, and inverse Fisher Z
transformed.

2.6.2. Correlation matrices
We generated correlation matrices to examine the community struc-

ture of the new ROIs. A correlation matrix is the set of all possible
pairwise correlations between mean BOLD time series from each ROI
organized into a symmetric matrix (since correlations are undirected).
We computed correlation matrices for both ROI Sets and each dataset
(primary, secondary, validation). The preprocessed BOLD time series for
each gray matter voxel within each ROI were averaged together (after
removing censored and interpolated frames). Then, the Pearson corre-
lation between every pair of ROIs was computed to create a 300 x 300
(ROI Set 1) and 394 x 394 (ROI set 2) correlation matrix for each subject.
Matrices were individually Fisher Z transformed, all matrices were
averaged together (within each ROI set and dataset; thus, six group-
average matrices were created in total-one 300 x 300 and one 394 x
394 for each of the WashU 120, HCP 80, and MSC 9), and finally, inverse
Fisher Z transformed.

2.6.3. Community detection
To determine the functional network membership of each ROI, an

information-theoretic community detection algorithm was implemented
(InfoMap; Rosvall and Bergstrom, 2008). InfoMap requires a sparse
matrix, so an edge density threshold was applied to the correlation
matrices. The networks (correlation matrices) were thresholded until
only the strongest X percent of edges remained. All retained edges
maintained their correlation value or weight (i.e., the networks were not
binarized). We ran InfoMap over a range of thresholds (X¼ 2–10% in-
clusive, with a 1% step increment, following Power et al. (2011)).

In general, the magnitude of BOLD correlations between the cortex
and the subcortex, the cortex and the cerebellum, and the subcortex and
the cerebellum is substantially weaker than within-structure (and
particularly, cortico-cortical) correlations. The primary reasons for this
are likely distance from the head coil and signal dropout due to sinuses.
For instance, in the primary dataset, off-diagonal (between-structure)
correlations from the subcortex and cerebellum account for 40% of the
weakest decile of correlations (i.e., the 10% of correlations closest to 0),
even though the subcortex and cerebellum account for only 23% of all
ROIs. Therefore, in order to ensure that between-structure correlations
were included, structure-specific thresholding was used (Marek et al.,
2018). The correlation matrix was separated into cortical, subcortical,
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and cerebellar components (e.g., the subcortical component is every
entry in each row corresponding to any subcortical ROI) and the edge
density thresholds were applied to each component separately. Thus, if a
2% structure-specific edge density was applied to the matrix, the top 2%
of cortical, top 2% of subcortical, and top 2% of cerebellar correlations
(excluding diagonal entries) were extracted and all other correlations
were set to 0.

2.6.4. Consensus network procedure
Consensus functional network communities were determined in a

semi-automated, multistep process. First, a weighting procedure was
applied across InfoMap thresholds. For the 2% and 3% thresholds the
weight was 5, for the 4% and 5% thresholds the weight was 3, and the
weight was 1 for all other thresholds. These weights were chosen to bias
the consensus solution to have approximately 17 networks on the basis of
work from Yeo and colleagues (Yeo et al., 2011). Since smaller networks
tend to be observed at sparser thresholds, those thresholds contribute
more weight than the denser thresholds. For each ROI (independently),
the InfoMap-determined community at each threshold was noted, taking
the weights into account, and the highest weighted community was
assigned as the consensus.

After this automated consensus procedure, authors BAS, CG, and DJG
reviewed the community assignment of each new subcortical and cere-
bellar ROI. In ambiguous cases (e.g., an even split in assignment across
thresholds), we consulted literature describing the anatomy and function
of that brain region. In cases when the InfoMap and the winner-take-all
assignments differed, we adjudicated between the two using a previ-
ously described template-matching algorithm (from Gordon et al.,
2017a). Briefly, a seedmap was generated for each ROI, and binarized
such that all correlation values greater than 0 were set to 1 (all others set
to 0). Then, the cortical portion of this binary seedmap was compared to
14 network templates (binary representations of whole-network seed-
maps defined a priori) via the dice coefficient. Each ROI received the
network label for which the dice overlap was maximal. There were 24
ROIs that required adjudication in this way.

All cortical ROIs retained their original assignment from published
works (Power et al., 2011 for ROI Set 1 and from Gordon et al., 2016 for
ROI Set 2) unless there was strong evidence to overturn the original.
Specifically, if an ROI in the present InfoMap solution received the same
assignment across all thresholds and that assignment was distinct from
the original, then the ROI was assigned to the novel network community
(detailed in Section 3.3). Furthermore, 5 ROIs originally assigned to the
salience network were reassigned to the cingulo-opercular network. We
made this change because (1) the ROIs showed profiles intermediate
between salience and cinguloopercular assignments and (2) previously
published studies revealed that these brain regions demonstrate
task-evoked activity consistent with the cingulo-opercular network
(Dosenbach et al., 2006; Dubis et al., 2016; Gratton et al., 2018b, 2017;
Neta et al., 2014).

2.6.5. Validation of ROIs and consensus networks
The primary and secondary datasets were used to create the subcor-

tical and cerebellar ROIs, respectively. The validation dataset (MSC) was
used to test the validity of the consensus functional network communities
in both cases. The network community assignment for each ROI was
compared across all datasets, and discrepancies were noted. Further,
consensus networks were compared with those from previously pub-
lished literature including the Morel anatomical atlas of the subcortex
and the SUIT anatomical atlas of the cerebellum. Additionally, the
winner-take-all assignments were compared between split-halves of the
primary dataset. Finally, we measured the degree of confidence in the
“winning” network for each subcortical and cerebellar voxel by calcu-
lating the difference in functional connectivity between the winning and
second place network assignments, as in Marek et al. (2018). This anal-
ysis was conducted with the primary dataset (WashU 120) for the basal
ganglia and thalamus, and with the validation dataset (MSC) for the
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cerebellum. We examined the location of each ROI with respect to this
estimation of confidence in the winner-take-all assignments (SI Fig. 1).

2.7. Accounting for ROIs with strong functional connectivity to multiple
networks

The InfoMap and winner-take-all approaches each yield a single
network solution for each ROI. However, there is evidence that regions
within the subcortex connect with multiple functional networks, as
previous studies have identified zones of integration within the basal
ganglia and thalamus (Greene et al., 2020; Garrett et al., 2018; Hwang
et al., 2017). Such integration may be a source of low-confidence win-
ner-take-all assignments (SI Fig.1). To address this issue, we used the
validation dataset (MSC) to identify ROIs that overlap with “integrative”
voxels. As in Greene et al., a voxel was considered integrative if its cor-
relation with any network was within 66.7% of its correlation with the
“winning” network. Note that identification of integrative voxels is
highly similar across thresholds (within 50–75% of the “winning”
network) and with different methodologies (e.g., a method based on
effect size). Then, we calculated the percent of voxels within each
non-cortical ROI that overlapped with integrative voxels. ROIs with a
majority of overlapping voxels (>50%) were flagged as “integrative.”

2.8. Spring-embedded graphs and participation coefficient

To visualize the community structure of networks in an abstract graph
space, spring-embedded graphs were created. The networks (correlation
matrices) were thresholded in the same way as in Section 2.6.3, and the
resulting matrices were submitted to a physical model of connected
springs (the Kamada-Kawai algorithm, as used in Power et al., 2011).
Correlations between pairs of ROIs were modeled as force constants
between connected springs such that strongly correlated ROIs were
“pulled” close to one another. ROIs were colored according to their
consensus functional network community or their anatomical location.

To quantify the degree to which an ROI plays a hub-like role in the
network, the participation coefficient of each ROI was computed across
(structure-specific) edge density thresholds between 2 and 20%. Partic-
ipation coefficient was calculated as defined for weighted networks in
Rubinov and Sporns (2010) using code from the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010).

3. Results

3.1. Subcortical and cerebellar ROIs

The final set of subcortical and cerebellar ROIs overlaid onto the
winner-take-all partitions are displayed in Figs. 1 and 2, respectively. The
winner-take-all partitions were similar to previously published partitions
for the basal ganglia (Choi et al., 2012; Greene et al., 2014), thalamus
(Hwang et al., 2017), and cerebellum (Buckner et al., 2011), and showed
good split-half replication (dice overlap of 61.5% in the thalamus and
60.1% in the basal ganglia; SI Fig. 2). Many ROIs outside the cortex agree
with anatomical divisions from previously established subcortical
(Morel, 2013) and cerebellar (Diedrichsen et al., 2009) atlases, as shown
in Fig. 3. ROIs that do not show perfect correspondence with anatomical
parcels may reflect discrepancies between anatomical and functional
division of these structures, potentially due to finer parcellations in the
anatomical atlases. A majority of the ROIs were contained within high
confidence winner-take-all parcels, as assessed in Marek et al. (2018) (SI
Fig. 1).

The 34 subcortical ROIs sampled the following anatomical structures
(bilaterally): the head and tail of the caudate; anterior dorsal, posterior
dorsal, anterior ventral, and posterior ventral putamen; the globus pal-
lidus (internus and externus combined); the ventral striatum (i.e., nu-
cleus accumbens); the amygdala (nuclei not distinguished); anterior and
posterior hippocampus; and regions in the thalamus. The locations of the



Fig. 1. Subcortical ROIs. The new ROIs (white circle with black outline) are displayed in serial coronal (A), sagittal (B), and axial (C) sections of the thalamus and
basal ganglia, with the cortical functional networks for reference (D). The ROIs are overlaid on top of the voxel-wise winner-take-all partitions.

Fig. 2. Cerebellar ROIs. The new ROIs (white circle with black outline) are displayed in serial coronal (A), sagittal (B), and axial (C) sections of the cerebellum, with
the cortical functional networks for reference (D). The ROIs are overlaid on top of the voxel-wise winner-take-all partitions. ROIs in the amygdala and anterior
hippocampus are overlaid on anatomical coronal sections in the bottom right panel of C.
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thalamic ROIs included the following nuclei and surrounding territory
(the resolution of our data was not fine enough to delineate precise
thalamic nuclei): medio-dorsal (MD), latero-dorsal (LD), ventro-anterior
(VA), ventro-lateral (VL), ventro-posterolateral (VPL), and lateral
geniculate nucleus (LGN)-pulvinar. The 27 cerebellar ROIs sampled the
vestibulo-, spino-, and cerebro-cerebellum, including the cerebellar
6

vermis, classical motor cerebellar cortex, and cerebellar association
cortex (Woolsey et al., 2008).

3.2. Correlation structure replicates across datasets

Exemplar seedmaps from the new ROIs for the primary dataset are



Fig. 3. Functionally-defined ROIs overlaid
onto anatomical parcellations. Many of the
subcortical and cerebellar ROIs are contained
within a single anatomical parcel from the
Morel atlas of the subcortex (A) and the SUIT
atlas of the cerebellum (B), indicating good
agreement with the current functional par-
cellation. A few ROIs overlap multiple
anatomical parcels (e.g., dorso-lateral thal-
amus, right posterior cerebellum), which may
be a consequence of a finer parcellation than
is possible with the current fMRI data.
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displayed in Fig. 4, and the group-average correlation matrices for all
datasets using ROI Set 1 are displayed in Fig. 5. The correlation matrices
using ROI Set 2 are displayed in SI Fig. 3. The seedmaps were comparable
to previously published maps (Fig. 4). The matrices were quite similar
across datasets (r120,HCP¼ 0.90, r120,MSC¼ 0.93, rHCP,MSC¼ 0.87), with
results from the primary dataset replicating best in the validation (MSC)
dataset. However, in the secondary (HCP) dataset, there was approxi-
mately 0 correlation between subcortical ROIs and all other ROIs,
including homotopic subcortical ROI pairs. The likely reason for this
difference is due to poor temporal signal-to-noise ratio in the subcortex of
HCP data (Ji et al., 2019), which we demonstrate here in SI Fig. 4. Thus,
we excluded the secondary dataset from all further analyses.
7

3.3. Functional network organization using the expanded ROI Set

We used a data-driven community detection algorithm (InfoMap) on
weighted networks to determine the functional network community
membership of the expanded set of ROIs (Rosvall and Bergstrom, 2008).
The results of this analysis are displayed in Fig. 6. Communities are
shown for all tested edge density thresholds alongside the consensus
network communities (see section 2.6).

In the subcortex and cerebellum, the consensus network communities
were as follows: ROIs in the caudate associated with the default mode
network (head) or the frontoparietal network (tail). The putamen and
globus pallidus ROIs joined the somatomotor dorsal network. In the



Fig. 4. Exemplar seedmaps for the new
ROIs. Functional correlation seedmaps are
shown for an exemplar ROI in the cerebellum
(A) and dorsal striatum (B). The consensus
functional network assignment of each ROI is
represented by its color (left column). Seed-
maps display the correlations between the
mean BOLD signal from the ROI in question
and the BOLD signal from every other gray
matter voxel (middle column). Results were
similar to comparable seedmaps from previ-
ously published studies (right column). Im-
ages from Buckner, R.L. et al., 2011. The
organization of the human cerebellum esti-
mated by intrinsic functional connectivity.
Journal of Neurophysiology 106 (5)
2322–2345; and, Di Martino, A. et al., 2008.
Functional Connectivity of Human Striatum:
A Resting State fMRI Study. Cerebral Cortex
18 (12), 2735–2747 reproduced with
permission from The American Psychological
Society and Oxford University Press. (C)
Correlation structure for the Medial Tempo-
ral Lobe (left) and Striatal OrbitoFrontal
Amygdalar (right) networks are displayed
(see section 3.3).
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thalamus, the default mode network was assigned to medio-dorsal re-
gion, the cinguloopercular network to the latero-dorsal and ventro-
anterior regions, the somatomotor dorsal network to the ventro-lateral
and ventro-posterolateral regions, and the visual network to the ROI that
includes the lateral geniculate nucleus and the posterior portion of the
pulvinar. We use the names of the thalamic nuclei for convenience here,
even though the ROIs encompass more gray matter than just the nuclei
themselves. Cerebellar ROIs joined various networks, including the
default mode, frontoparietal, and cinguloopercular networks (lateral),
the somatomotor networks (motor cerebellar cortex), and the visual
network (vermis). Most of the observed network assignments agree with
known brain function, such as the association between ventro-postero-
lateral thalamic region and the somatomotor dorsal network.

While some ROIs did not vary in network membership across
thresholds (e.g., the tail of the caudate ROIs), others changed network
membership after a certain threshold (e.g., the putamen ROIs) or
switched between two or more networks (e.g., some of the thalamic
ROIs). This variation is similar to the variation seen with cortical ROI
assignments (e.g., see Fig. 1 from Power et al., 2011 and Fig. 2A from
Power et al., 2013) and is indicative of the loss of some finer-scale
community structure at denser thresholds.

Importantly, we replicated these community assignments in the
validation dataset (MSC; note that we did not use the secondary dataset
for this analysis due to poor signal-to-noise in the subcortex). The
consensus communities from the primary and validation datasets were
broadly consistent across the two ROI Sets, with 55 out of 61 subcortical
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(including the amygdala and hippocampus) and cerebellar ROIs
receiving the same assignment. For 24 ROIs, the InfoMap and winner-
take-all assignments differed, requiring adjudication. A template-
matching approach was implemented to adjudicate the consensus
network of these ROIs. As an example, an ROI in the dorsal striatum was
assigned to the salience (winner-take-all) and default mode (InfoMap)
networks. The template-matching approach provided evidence for a final
assignment to the salience network (Fig. 7; see section 2.6.4; dice overlap
with salience network template¼ 0.78).

Most cortical ROIs retained their functional network membership
from Power et al. (2011) (ROI Set 1) or Gordon et al. (2016) (ROI Set 2).
Nonetheless, with to the addition of the new ROIs, we observed two
functional networks not previously observed with the original ROI sets:
(1) a network composed of ROIs in the amygdala, ventral striatum, and
orbitofrontal cortex, which we will call the “striatal-orbito-
frontal-amygdalar (SOFA)” network and (2) a network composed of ROIs
in the anterior hippocampus and entorhinal cortex, which we will call the
medial temporal lobe (MTL) network. In addition, in ROI Set 1, 10 pre-
viously unlabeled ROIs were now assigned to a network: 4 to the SOFA
network, 3 to the MTL network, 2 to the visual network, and 1 to the
dorsal attention network. Also, 12 ROIs changed network membership: 2
from the cinguloopercular network to the somatomotor dorsal network, 1
from the auditory network to cinguloopercular network, and 9 from the
salience network to the frontoparietal (2), dorsal attention (1), and cin-
guloopercular (6) networks. For ROI Set 2, 39 previously unlabeled ROIs
were assigned to a network: 8 to the SOFA network, 10 to the MTL



Fig. 5. Correlation matrices are similar across datasets. The full (300 x 300) correlation matrices for ROI Set 1 are displayed for each dataset in the left column,
and zoomed-in versions of the subcortical and cerebellar portions of the matrices are displayed in the right column (the corresponding images for ROI Set 2 are shown
in SI Fig. 3). The cortical portion of the correlation matrix is sorted by functional network community, whereas the subcortical and cerebellar portions are sorted first
by anatomical structure (i.e., basal ganglia, thalamus, and cerebellum) and then by functional network community (within each structure). The matrices are similar to
one another (e.g., the correlation between the primary and validation datasets is 0.93), except for the subcortical portion of the secondary dataset (HCP- Human
Connectome Project). We observed poor temporal signal-to-noise in subcortical HCP data (SI Fig. 4). The first row and column of the matrices correspond to unlabeled
regions (i.e., InfoMap was unable to assign these ROIs to a network, similar to Power et al., 2011 and Gordon et al., 2016).
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network, 16 to the parietooccipital network, and 5 to the default mode
network (SI Fig. 5). Again, consensus communities from the primary and
validation datasets were broadly consistent.

Given the evidence that some regions in the subcortex connect to
multiple functional networks (Greene et al., 2020; Garrett et al., 2018;
Hwang et al., 2017), we identified ROIs that overlap with integrative
subcortical voxels (i.e., voxels with strong functional connectivity to
more than one cortical functional network). We found that 8 ROIs in the
basal ganglia and 6 ROIs in the thalamus contained a majority of inte-
grative voxels (Fig. 8). Therefore, we flag these ROIs as “integrative” and
report the percent of integrative voxels in addition to their community
assignment in the publicly available ROI list. In the cerebellum, no ROIs
met these criteria.

3.4. Subcortical and cerebellar ROIs affiliate with known functional
networks

To visualize the ROIs in functional network space, we created spring-
embedded graphs, displayed in Fig. 9 (other edge densities in SI Fig. 6).
The implemented spring model aggregates nodes with strong correla-
tions between themselves and weak correlations with other nodes. Thus,
it is possible to observe which nodes segregate into separate communities
and which nodes act as connector hubs, mediating interactions across
different network communities (Cohen and D’Esposito, 2016; Gordon
et al., 2018; Gratton et al., 2012; Hagmann et al., 2008; Mattar et al.,
2015; Power et al., 2013; Van den Heuvel and Sporns, 2013).

As is evident from the position of the bolded network nodes, the
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subcortical and cerebellar ROIs were distributed throughout the spring-
embedded graph. For instance, the cerebellar ROIs (gray) were not
segregated from the rest of the network communities as in previous re-
ports (Gratton et al., 2018a; Power et al., 2011). This finding was
consistent between the primary and validation datasets. However, we
observed that the basal ganglia, thalamus, and cerebellum did segregate
into their own network communities when the graph was created
without structure-specific edge density thresholding (SI Fig. 6; see Sec-
tion 2.6.3 for the thresholding procedure). That is, the basal ganglia,
thalamus, and cerebellum clustered into their own separate network
communities with standard edge density thresholding (applying the
threshold uniformly to the whole correlation matrix), likely because of
the lower correlation magnitudes associated with these regions.

To assess the effect of including the new ROIs on network topology,
we examined two graph-theoretic network measures: modularity and
participation coefficient (SI Fig. 7; Rubinov and Sporns, 2010). Addition
of the non-cortical ROIs decreased modularity, with structure-specific
thresholding resulting in a further decrease. Similarly, the participation
coefficient of ROIs in the subcortex was significantly higher, on average,
than ROIs in the other structures, consistent with the finding that some of
these ROIs contained integrative voxels. Structure-specific thresholding
resulted in higher average participation coefficient for all structures.

4. Discussion

Here we present a set of regions of interest (ROIs) that sample the
basal ganglia, thalamus, cerebellum, amygdala, and hippocampus more



Fig. 6. InfoMap-defined functional network communities. The InfoMap-defined functional network community of each ROI is displayed. (A) Cortical ROIs are
shown projected onto the surface of the brain, and some of the non-cortical ROIs are displayed in axial slices to the right of the cortical surface. (B) The matrices
represent the functional network assignment of each ROI across all tested edge densities (each column, denoted by the tick marks, represents one edge density), with
the consensus functional network community displayed in the last column of each matrix (delineated by the vertical black line). Results are shown for the primary and
validation datasets. The matrices on the left represent the cortical ROIs. The matrices on the right show zoomed-in results for all non-cortical ROIs. Results were highly
consistent in the subcortex, cerebellum, amygdala, and hippocampus, with a total of 3 disagreements between datasets (in addition to 3 unlabeled ROIs at the bottom
of the cerebellum forming their own “network” in the MSC dataset).
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Fig. 7. Disambiguation of discrepancies between assignments. In cases
where the winner-take-all assignment and InfoMap solution differed, a template-
matching approach (Gordon et al., 2017a) was used to determine the consensus
ROI assignment. This exemplar ROI (head of the caudate) was assigned to the
salience network (black) via the winner-take-all approach and the default mode
network (red) via InfoMap. The ROI’s seedmap is more similar to the salience
network (left, black outline) than the default mode network (left, red outline),
especially on the lateral surface of the brain. Arrows highlight functional con-
nectivity within some salience and default mode network regions. The
template-matching approach confirmed the stronger similarity to the salience
network (dice overlap with salience network template¼ 0.78).
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completely than previous ROI sets in order to provide a whole-brain
description of functional network organization. We found that the
refined region sets recapitulate previous network organization results in
the cortex and extend functional brain network characterization to
the subcortex and cerebellum. Notably, these results replicated
across independent datasets. In addition, with the inclusion of the
new ROIs, we observe two additional functional networks that were
not present in Power et al. (2011) and Gordon et al. (2016): a
striatal-orbitofrontal-amygdalar (SOFA) network and a medial temporal
lobe (MTL) network.
Fig. 8. Some ROIs in the basal ganglia and thalamus have strong connectivity
displayed in red and yellow colors. These voxels have strong connectivity to mor
translucent white) contain a majority of integrative voxels (green arrow), while oth
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4.1. Improved sampling of the subcortex and cerebellum

Many recent research efforts have used the 264 ROIs from Power et al.
(2011) or the 333 surface-based parcels from Gordon et al. (2016) to
study brain network organization. These studies have examined both
structural and functional network organization in a wide variety of
samples, including healthy young adults (Power et al., 2013; Zanto and
Gazzaley, 2013), developmental cohorts (Gu et al., 2015; Nielsen et al.,
2018; Rudolph et al., 2017), older adults (Baniqued et al., 2018; Gallen
et al., 2016), and a plethora of neurological and psychiatric populations
(Gratton et al., 2018a; Greene et al., 2016; Sheffield et al., 2015; Siegel
et al., 2018). We have gained a better understanding of typical and
atypical human brain organization from these efforts. However, a full
characterization of whole-brain network organization in these pop-
ulations is incomplete due to the common unsderrepresentation of the
subcortex and cerebellum. While there is recent work that has focused
separately on networks in the thalamus, subcortex, and cerebellum (e.g.,
Bell and Shine, 2016; Buckner et al., 2011; Choi et al., 2012; Greene
et al., 2014; Hwang et al., 2017), here we offer a set of ROIs that
encompass all of these structures to encourage broader adoption of a
whole-brain approach (as recently used in Nielsen et al., 2019).

The functionally-defined subcortical and cerebellar ROIs presented in
the current work provide a better sampling of these structures. By
improving their representation, we were able to delineate well-
characterized and additional functional network communities (relative
to our past descriptions). The ability to uncover these networks, which
have been previously described using other methods, illustrates the
importance of representing the entire brain in network-based analyses.
Further, these improved ROI sets may allow future studies to discover
previously unobserved, yet critical deviations in functional network or-
ganization in diseases and disorders in which the subcortex and cere-
bellum are implicated (e.g., Parkinson Disease, Tourette Syndrome,
Schizophrenia).

It is worth noting that, by definition, the cortical surface parcels omit
the subcortex and cerebellum. Yet, it is technically possible to parcellate
the subcortex and cerebellum using an adapted gradient-based method-
ology (such as the one from Gordon et al., 2016). This approach would
to multiple networks. Integrative voxels in the basal ganglia and thalamus are
e than one cortical functional network. Some of the novel ROIs (displayed in
er ROIs contain few or none (purple arrow).



Fig. 9. Spring-embedded graphs show that subcortical and cerebellar ROIs affiliate with well-characterized network communities. Spring-embedded graphs
are displayed for ROI Set 1 using the primary and validation datasets at a structure-specific edge density threshold of 3% (other edge densities shown in SI Fig. 6; see
section 2.6.3 for the thresholding procedure). Non-cortical ROIs are larger and have a bold outline. The color of each ROI represents its consensus functional network
community assignment, except for the non-cortical ROIs, which are labeled by anatomical structure. The basal ganglia, thalamus, and cerebellum distribute
throughout the graph, affiliating with well-characterized networks rather than segregating into their own communities.
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require extending the gradient technique to three dimensions. As fMRI
technology and analysis strategies improve, it would be useful to
compare the current results to a full subcortical and cerebellar parcella-
tion using this or other gradient-based techniques.

A methodological issue to note is that the winner-take-all approach
used to define subcortical and cerebellar parcels here may be sensitive to
the number of a priori cortical networks used in the analysis. Increasing the
number of cortical networks included may allow for finer parcellation of
certain structures. Here we used previously well-characterized cortical
networks that have been consistently found using multiple methods by
multiple research groups (Power et al., 2011; Yeo et al., 2011). Conversely,
InfoMap does not require an a priori number of networks, but may be
sensitive to thresholding issues (discussed below). Importantly, final
network assignments for the ROIs were designated using a combination of
both techniques. Moreover, 14 ROIs that demonstrated strong connectivity
with multiple functional networks were noted as integrative.

4.2. Functional connectivity of the refined ROIs is consistent with previous
studies and replicates across independent datasets

Correlation seedmaps from the refined ROIs agree with functional
connectivity profiles reported in previous studies. For example, the ROIs
added to the ventral striatum and the head of the caudate correspond
closely to the seeds placed in the superior ventral striatum (VSs) and
dorsal caudate (DC) reported in Di Martino et al. (2008), and our seed-
maps are highly similar to theirs. Likewise, seedmaps from the amygdala
agree well with those from Roy et al. (2009). The same is true for the
thalamus (Hwang et al., 2017) and cerebellum (Buckner et al., 2011).

Moreover, the full correlation structure (shown in correlation
matrices) was quite comparable across the diverse datasets. The one
major discrepancy was that in the subcortical portion of the matrix from
the secondary (HCP) dataset, we observed correlations near zero. The
reason for this observation is likely poor temporal signal-to-noise ratio
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(tSNR) in the subcortex of HCP data (Ji et al., 2019). Several factors may
contribute to this poor tSNR. (1) The HCP used a custom scanner and
head coil, which caused unique magnetic field inhomogeneities, possibly
in part due to subjects’ heads being outside of the isocenter of the field.
(2) The imaging sequence used an aggressive multiband factor and TR
(MB¼ 8, TR¼ 0.72s) and (3) small voxels (2x2x2mm) were used for
acquisition (Glasser et al., 2013; Van Essen et al., 2012). Each of these
factors substantially increase electronic, thermal, and other physical
sources of noise (Triantafyllou et al., 2005) relative to slower sequences
with larger voxels. These effects may be amplified as a function of the
distance of the imaged structure from the head coil, resulting in the
poorest tSNR in the subcortex. Further work is needed to determine the
specific contributions of each factor, as well as others heretofore un-
considered, to the observed poor tSNR.

The presented group-level descriptions converge on a very similar
picture of functional network organization in the subcortex and cere-
bellum. However, there are individual differences in both subcortical and
cerebellar functional network organization (Marek et al., 2018; Greene
et al., 2020), as have been found in cortical functional network organi-
zation. Future work designed for in-depth study of individuals, as in
Poldrack et al. (2015), Filevich et al. (2017), Braga and Buckner (2017),
and Gordon et al. (2017b), will be important for elucidating such indi-
vidual differences. In fact, in-depth study of the cerebellum (Marek et al.,
2018) and subcortex (Greene et al., 2020) in individuals reveals both
common and unique features in its functional organization. Furthermore,
future workmay be able to include the brainstem as well in a whole-brain
functional network atlas, although there are several technical issues to
overcome (e.g., CSF pulsations, small nuclei).

4.3. SOFA and MTL functional networks map onto known human brain
systems

Group-average functional network organization in the cerebral cortex
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is largely consistent across studies (Power et al., 2011; Yeo et al., 2011),
and the addition of refined subcortical and cerebellar ROIs did not
change functional network organization in the cortex substantially
(although we observed associations between these canonical networks
and ROIs in the subcortex and cerebellum). However, the addition of
these subcortical and cerebellar ROIs allowed for the identification of
two additional functional networks compared to the networks reported
using the original ROI sets in Power et al. (2011) and Gordon et al.
(2016): (1) the “SOFA” network composed of the amygdala, orbitofrontal
cortex, and ventral striatum, and (2) the “medial temporal lobe (MTL)”
network composed of the anterior hippocampus and entorhinal cortex. It
is worth noting that the SOFA network has been observed in studies
focusing on reward and emotion processing (Camara et al., 2009) and its
cortical and striatal portions are very similar to the limbic network from
Yeo et al. (2011) and Choi et al. (2012). The MTL network has been
observed in a study of highly-sampled individuals (Gordon et al., 2017b)
as well as studies focused on the hippocampus (Greicius et al., 2009).
Here, we demonstrate that these networks are measurable at the
group-level when the whole brain is represented sufficiently. In addition,
we found that some cortical ROIs that were previously unlabeled (i.e.,
they did not group with any community) received labels with the in-
clusion of the refined subcortical and cerebellar ROIs, with many of them
joining the SOFA and MTL networks.

The SOFA and MTL functional networks map onto well-characterized
brain systems. Most of the ROIs in the SOFA network are likely connected
to each other anatomically in rodents, nonhuman primates, and humans
(Ongur and Price, 2000; Carmichael and Price, 1995; Amaral and Price,
1984). Moreover, these brain areas are known to be functionally related,
as they are important for various aspects of decision making and
reward-related behavior, such as economic choice (Padoa-Schioppa and
Assad, 2006), emotional regulation (Phelps, 2006), and gambling
(Bechara et al., 2000, 1997). Likewise, the ROIs in the MTL network are
well-connected anatomically (Duvernoy, 1988; Woolsey et al., 2008) and
support various aspects of memory formation, consolidation, and
retrieval, as well as other important functions, such as spatial mapping
(Burgess et al., 2002; Moser and Moser, 1998; Tulving and Markowitsch,
1998). Though our current work is agnostic to the function of these brain
systems, we show that their constituent regions demonstrate coherent
spontaneous fluctuations in infraslow BOLD signals.

4.4. Some ROIs in the subcortex exhibit functional connectivity with
multiple cortical networks

There is evidence to suggest that regions of the basal ganglia and
thalamus act as integration zones, combining information from multiple
functional brain networks (Garrett et al., 2018; Haber, 2003; Hwang
et al., 2017). A majority of the non-cortical ROIs included in this study
exhibited functional connectivity primarily with just one cortical func-
tional network, and therefore, can be considered network-specific ROIs.
Particularly in the cerebellum, we found that all ROIs were
network-specific. However, in the basal ganglia and thalamus, some ROIs
overlapped with integration zones, as they contained voxels with strong
connectivity to multiple cortical networks. These subcortical integration
zones have been explored more fully by Greene et al. (2020), demon-
strating preferential integration of particular networks within given
subregions of the basal ganglia and thalamus. These findings are
consistent with models of subcortico-cortical connectivity describing
parallel and integrative circuits (Haber, 2003) as well as with previous
non-human primate research (Averbeck et al., 2014; Choi et al., 2017)
and human neuroimaging work (Garrett et al., 2018; Hwang et al., 2017)
showing that subcortical structures contain integrative hubs.

We allow users of our ROI Sets to account for the above feature of
brain organization as flexibly as possible. For each ROI, we provide the
percent of voxels overlapping with integrative zones, and we flag “inte-
grative” ROIs as those with a majority of voxels in such regions (in our
publicly available lists). Thus, users can incorporate this information as
13
desired and include or exclude certain ROIs in order to craft an ROI Set
best-suited to investigate their research questions.

4.5. Subcortical and cerebellar ROIs affiliate with known functional
networks

To visualize the organization of the ROIs in functional network space,
we created spring-embedded graphs. We observed that the subcortical
and cerebellar ROIs affiliate with various well-characterized network
communities composed of cortical regions instead of segregating on their
own (i.e., away from cortical ROIs), particularly after structure-specific
thresholding (see below). This organization fits with the known anat-
omy and function of the subcortex and cerebellum better than a model in
which each structure is segregated into its own community. For instance,
individual nuclei in the thalamus project directly to distinct brain sys-
tems (Woolsey et al., 2008) and play unique roles in behaviors associated
with those systems (Guillery, 1995; Van Der Werf et al., 2000). Likewise,
striato-cortical and cerebello-cortical anatomical connections show spe-
cific projections to unique regions of cortex (Woolsey et al., 2008) and
are known to be integral for the function of various large-scale, distrib-
uted systems, such as the motor system (Glickstein and Doron, 2008) and
regions of higher order systems (Alexander et al., 1986; Strick et al.,
2009). Investigation of network measures revealed that the subcortical
ROIs have a higher participation coefficient, on average, than other
structures, meaning they have modest-to-high correlations with multiple
networks. This result is consistent with the idea that subcortical struc-
tures contain integrative hubs (Hwang et al., 2017; Greene et al., 2020).
Likewise, the non-cortical ROIs decrease the modularity of the whole
network, reflecting decreased segregation and increased integration.
These results are consistent with the finding of integrative ROIs in the
subcortex described above. It should be noted, however, that several
methodological factors may affect or potentially bias network measures
(like participation coefficient), such as structure-specific thresholding
and the interaction between structure size and BOLD fMRI spatial
autocorrelation.

The demonstration that subcortical and cerebellar ROIs affiliate with
cortical networks was revealed by the use of structure-specific edge
density thresholding (i.e., thresholding the cortex, subcortex, and cere-
bellum separately). In most network analyses, only the strongest positive
correlations are considered for network-based analyses, such as spring-
embedded graphs. However, subcortical correlations are generally
weaker than cortical correlations (likely due to distance from the head
coil and signal dropout due to sinuses). Thus, if the top 5% strongest
positive correlations are selected, almost all subcortical correlations will
be excluded. To avoid this exclusion, we implemented structure-specific
thresholding. This choice ultimately affects the nature of the spring-
embedded graph as well as the determination of functional network
communities and network measures. Without structure-specific thresh-
olding, subcortical ROIs group with one another into two separate
network communities (basal ganglia and thalamus), while the entire
cerebellum is lumped into one network community. In terms of human
brain functional organization, this pattern of clustering seems artificially
inflated due to low subcortex-to-cortex and cerebellum-to-cortex corre-
lations. By using structure-specific thresholding, we were able to observe
functional network organization that is more consistent with the known
functions of the subcortex and cerebellum. However, this approach may
affect graph theoretic networkmeasures in the subcortex and cerebellum,
and thus, deserves future investigation.

4.6. “Optimal” ROI set depends on research question

There are advantages to both anatomical and functional network-
based divisions of ROIs. For instance, anatomical network divisions
allow for analysis of important distinctions between the cortex, sub-
cortex, and cerebellum, whereas functional network divisions are likely
to better represent putative brain function. Likewise, there are



B.A. Seitzman et al. NeuroImage xxx (xxxx) xxx
fundamental differences between anatomical and functional atlases, with
anatomical atlases parsing the brain according to anatomical divisions
and cytoarchitecture, and functional atlases parsing the brain according
to functional criteria. For instance, the cerebellum is probabilistically
divided into lobes and crura in one anatomical atlas (Diedrichsen et al.,
2009). While many of these divisions align well with the ROIs presented
here, some ROIs do not fit within the probabilistic boundaries. Thus,
some ROIs may better reflect functional rather than anatomical divisions
in the cerebellum. Similarly, many of the divisions in a commonly used
subcortical anatomical atlas (Morel, 2013) agree well with the ROIs
presented here, with the exception of a few anatomical parcels that are
likely beyond the resolution of the fMRI data used here. Ultimately, re-
searchers should be cognizant of these effects when choosing how to
perform network-based analyses and which atlas or ROI Set to use. We
advise readers to use the analysis strategy and atlas that best suits their
research questions.

5. Conclusions

We created new subcortical and cerebellar ROIs to improve the rep-
resentation of these structures for brain network analysis. Combining
these new ROIs with previously characterized cortical ROIs provided
further insight into whole-brain functional network organization. Going
forward, inclusion of these ROIs will yield more comprehensive results
from fMRI studies of typical and atypical brain organization and function.
The ROI Sets and consensus functional network assignments described
here are available for immediate download and use at the Greene lab
website https://greenelab.wustl.edu.
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