
Cerebral Cortex, 2018; 1–15

doi: 10.1093/cercor/bhy117
Original Article

O R I G I NA L ART I C L E

Evaluating the Prediction of Brain Maturity From
Functional Connectivity After Motion Artifact
Denoising
Ashley N. Nielsen1, Deanna J. Greene2,3, Caterina Gratton1, Nico
U.F. Dosenbach1,4, Steven E. Petersen1,3,4,5 and Bradley L. Schlaggar1,2,3,4,6

1Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA, 2Department
of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA, 3Department of Radiology,
Washington University School of Medicine, St. Louis, MO 63110, USA, 4Department of Pediatrics, Washington
University School of Medicine, St. Louis, MO 63110, USA, 5Department of Psychology, Washington University
in St. Louis, St. Louis, MO 63130, USA and 6Department of Neuroscience, Washington University School of
Medicine, St. Louis, MO 63110, USA

Address correspondence to Ashley N. Nielsen, East Building Neuroimaging Laboratories, 4525 Scott Ave, Suite 2220, St. Louis, MO 63110, USA.
Email: ashley.nielsen@wustl.edu

Abstract
The ability to make individual-level predictions from neuroanatomy has the potential to be particularly useful in child development.
Previously, resting-state functional connectivity (RSFC) MRI has been used to successfully predict maturity and diagnosis of typically
and atypically developing individuals. Unfortunately, submillimeter head motion in the scanner produces systematic, distance-
dependent differences in RSFC andmay contaminate, and potentially facilitate, these predictions. Here, we evaluated individual age
prediction with RSFC after stringent motion denoising. Using multivariate machine learning, we found that 57% of the variance in
individual RSFC after motion artifact denoising was explained by age, while 4% was explained by residual effects of head motion.
When RSFC data were not adequately denoised, 50% of the variance was explained by motion. Reducing motion-related artifact also
revealed that prediction did not depend upon characteristics of functional connections previously hypothesized to mediate
development (e.g., connection distance). Instead, successful age prediction relied upon sampling functional connections across
multiple functional systems with strong, reliable RSFC within an individual. Our results demonstrate that RSFC across the brain is
sufficiently robust to make individual-level predictions of maturity in typical development, and hence, may have clinical utility for
the diagnosis and prognosis of individuals with atypical developmental trajectories.
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Introduction
Individual-level prediction about brain maturity has the poten-
tial to be useful for the assessment of developmental progress.
The ability to identify an individual with an atypical develop-
mental trajectory might facilitate more accurate diagnoses and
prognoses of developmental disorders and lead to earlier and

individualized treatment (Emerson et al. 2017; Hazlett et al.
2017). Clinically useful neurobiological measurements should be
sufficiently robust to make an accurate prediction of the maturity
of typically developing individuals and be closely related to the
dysfunction in developmental disorders. Multivariate descriptions
of these measurements, based on patterns of information, may be
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best equipped to make such robust and accurate predictions about
an individual child (Bray et al. 2009; Jimura and Poldrack 2012;
Sundermann et al. 2014). Measurements of functional connectivity
may be more closely linked to behavior/cognition and more likely
disrupted in developmental disorders. Resting-state functional con-
nectivity (RSFC) MRI, the temporal correlation between spontaneous
fluctuations in blood oxygen level-dependent signals across the
brain (Biswal et al. 1995), has been proposed to reflect the statistical
history of co-activation across an individual’s lifespan (Fox and
Raichle 2007; Dosenbach et al. 2008). In addition, RSFC is thought to
be disrupted in individuals with an atypical developmental trajec-
tory (Fox and Greicius 2010). Whether or not differences in function-
ally relevant neurobiology measured with RSFC carry multivariate
information germane to make predictions about the health and
maturity of an individual child is an important question.

Previously, Dosenbach and colleagues (2010) demonstrated
successful prediction of the maturity of individuals based on RSFC
using multivariate machine learning (Dosenbach et al. 2010).
Using a set of features (i.e., functional connections), they created a
multivariate model relating age and RSFC in a training dataset
and used this model to successfully predict the age of test indivi-
duals. Since then, others have also used machine learning to
show that RSFC can make predictions about age (Supekar et al.
2009; Meier et al. 2012; Vergun et al. 2013) as well as various other
qualities of individuals, including sex (Casanova et al. 2012) and
IQ (Santarnecchi et al. 2014). Additionally, multivariate machine
learning approaches have shown that there is information in
RSFC to classify healthy individuals from clinical populations
including ADHD (Liang et al. 2012), schizophrenia (Fan et al. 2011;
Bassett et al. 2012; Du et al. 2012), mild cognitive impairment/
Alzheimer’s disease (Koch et al. 2012; Wee et al. 2012), major
depressive disorder (Craddock et al. 2009), and autism (Nielsen
et al. 2013; Chen et al. 2016). Taken together, these results sug-
gest that differences in RSFC carry information important to
representing and making predictions about the individual.

Unfortunately, the success of many previous RSFC studies
using machine learning to make predictions about individuals
may be contaminated by (even submillimeter level) subject
head motion in the scanner. Small amplitude movements in
the scanner have been shown to have systematic effects on
observed resting-state correlations; this motion-related artifact
is distance-dependent, such that correlations are increased for
short-range connections and decreased for long-range connec-
tions, with specific sets of functional connections being more
affected than others (Power et al. 2012, 2014; Van Dijk et al.
2012; Satterthwaite, Elliott, et al. 2013; Ciric et al. 2017). Motion-
related artifact is problematic for machine learning approaches
because head motion is often correlated to the characteristics
being predicted (e.g., age, disease status, IQ) (Siegel et al. 2016).
Fortunately, we and others have developed methods to reduce
the adverse effects of motion-related artifact and other sources
of physiological noise on functional MRI data (Power et al. 2014;
Ciric et al. 2017). With these denoising approaches as well as
approaches that pre-emptively reduce head movements
(Dosenbach et al. 2017; Greene et al. 2018), many have worked
to validate previous machine learning results using RSFC after
attempting to correct for individual differences in head motion
(Fair et al. 2013; Greene et al. 2014; Pruett et al. 2015; Greene,
Church, et al. 2016; Emerson et al. 2017). Specifically, there is
growing evidence that after reducing artifactual differences in
RSFC related to movement, by including signal processing and
strict subject matching/selection (Fair et al. 2013; Satterthwaite,
Wolf, et al. 2013; Greene, Black, et al. 2016), RSFC can still be
used to successfully predict an individual’s age.

The present work has 2 major aims related to evaluating the
prediction of age from RSFC after motion denoising. First, we
aimed to evaluate whether or not there are lingering multivari-
ate effects of head motion on resting-state correlations that
contribute to age prediction. We tested whether patterns of
RSFC can be used to predict an individual’s age and an indivi-
dual’s in-scanner head movement using machine learning
before and after reducing motion-related artifact. Ensuring that
head motion cannot be predicted from RSFC after motion
denoising using machine learning is important for assessing
the viability of RSFC as an indicator of developmental progress
rather than confounding transient characteristics of indivi-
duals. Second, we were interested in evaluating the specific func-
tional connections that facilitate age prediction after reducing
motion-related artifact. Previously, Dosenbach et al. (2010) identified
a set of functional connections thought to best predict age using a
fairly straightforward data-driven, feature selection scheme (i.e.,
ranking the functional connections most correlated with age). Of
these top ranked functional connections, many were short-range
and long-range connections, in accordance with the “local-to-dis-
tributed” theory of RSFC development (short-range became weaker
and long-range became stronger with maturity) (Fair et al. 2009;
Supekar et al. 2009). However, developmental differences in head
motion produce differences in RSFC that reproduce this pattern
(i.e., with less subject head motion, short-range functional connec-
tions become weaker while long-range functional connections
become stronger). Thus, we aimed to identify the functional con-
nections that best predict age and test the “local-to-distributed”
hypothesis of RSFC development after reducing motion-related arti-
fact. More recently, investigators have used feature selection to
experimentally manipulate the information available for prediction
and compare the resulting predictive performance. Whether predic-
tion with RSFC depends upon a hypothesized, organizing principle
(e.g., functional systems (Du et al. 2012; Koch et al. 2012; Uddin
et al. 2013; Greene, Church, et al. 2016), RSFC strength (Bassett et al.
2012; Santarnecchi et al. 2014)), can be assessed by selecting and
testing a set of features with specific properties. Therefore, we also
sought to determine whether other organizing principles (e.g., func-
tional systems, RSFC strength) facilitate age prediction with
hypothesis-driven feature selection.

Materials and Methods
Participants

A group of 122 healthy children and adults (ages 7–31 years old,
66 males) were selected from an extant database of participants
(n = 487, ages 6–35 years old, 206 males) on the basis of having at
least 120 data frames (~5min) of usable resting-state fMRI data
(as defined below). Participants were recruited from the
Washington University campus and the surrounding commu-
nity. All participants were native English speakers, right-handed,
and reported no history of neurological or psychiatric disease or
a current prescription of psychotropic medications (parental
report for child participants). All adult participants, and a parent
or guardian for each child participant, gave informed consent,
and all children assented to data collection. All participants were
compensated for their participation. The Washington University
Human Research Protection Office approved all studies.

Image Processing

Image Acquisition
Data were collected on a Siemens 3 T MAGNETOM Trio scanner
with a Siemens 12-channel Head Matrix Coil. To help stabilize

2 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhy117/5025421 by W

ashington U
niversity, Law

 School Library user on 12 N
ovem

ber 2018



head position, each subject was fitted with a thermoplastic
mask fastened to holders on the head coil. A T1-weighted sagit-
tal MP-RAGE structural image (slice time echo, 3.06ms; TR 2.4 s;
inversion time, 1 s; flip angle, 8°; 127 slices; 1 × 1 × 1mm3 vox-
els) in the same anatomical plane as the BOLD images were
obtained to improve alignment to an atlas. Functional images
were acquired using a BOLD contrast-sensitive echo planar
sequence (TE, 27ms; flip angle, 90°, in-plane resolution, 4 ×
4mm2; volume TR 2.5 s). Whole-brain coverage was obtained
with 32 contiguous interleaved 4mm axial slices. Steady-state
magnetization was assumed after 4 volumes. The total number
of resting-state functional volumes acquired ranged from 184
to 780. The length of each resting-state run ranged from 5 to
30min.

During the resting-state scans, participants viewed a cen-
trally presented white crosshair (subtending <1° visual angle)
on a black background. Participants were instructed to relax,
“keep an eye on the plus sign”, and hold as still as possible.

Image Analysis
Functional images from each participant were preprocessed
to reduce artifacts (Shulman et al. 2010). These steps included:
1) temporal sinc interpolation of all slices to the temporal mid-
point of the first slice, accounting for differences in the acquisi-
tion time of each individual slice, 2) correction for head
movement within and across runs, and 3) intensity normaliza-
tion of the functional data was computed for each individual
via the MP-RAGE T1-weighted scans. Each run was then
resampled in atlas space on an isotropic 3mm grid combining
movement correction and atlas transformation in a single
interpolation. The target atlas was created from thirteen chil-
dren (7–9 years old) and twelve adults (12–30 years old) using
validated methods (Black et al. 2004). The atlas was constructed
to conform to the Talairach atlas space.

Several additional preprocessing steps were applied to
reduce spurious variance unlikely to reflect neuronal activity
(Fox et al. 2009). These RSFC preprocessing steps included: 1)
demeaning and detrending each run, 2) multiple regression of
nuisance variables, 3) frame censoring (discussed below) and
interpolation of data within each run, 4) temporal band-pass fil-
tering (0.009 Hz < f < 0.08 Hz), and 5) spatial smoothing (6mm
full width at half maximum). Nuisance variables included
motion regressors (e.g., original motion estimates, motion deri-
vatives, and Volterra expansion of motion estimates), an aver-
age of the signal across the whole brain (global signal),
individualized ventricular and white matter signals, and the
derivatives of these signals.

Reducing Head Motion-Related Artifact
We applied a procedure determined and validated to best
reduce artifacts related to head motion (Power et al. 2014; Ciric
et al. 2017). With this approach to reducing motion-related arti-
fact, we can re-evaluate whether patterns of RSFC can predict
an individual’s age, but not age-related head movement.

Specifically, frame-by-frame head displacement (FD) was
calculated from preprocessing realignment estimates, and
frames with FD > 0.2mm were removed. An FD threshold of
0.2mm was chosen because it best reduced the distance-
dependence related to individual differences in head motion
(estimated with mean FD and 6 motion parameters) in this
developmental dataset, as assessed using procedures from
Power et al. (2012) and Ciric et al. (2017) (see Supplemental
Material A). Data were considered usable only in contiguous

sets of at least 3 frames with FD < 0.2 and a minimum of 50
frames within a functional run. “Bad” frames were censored
from the continuous, processed resting-state time series before
computing resting-state correlations. Notably, the global signal
was included as a nuisance regressor (mentioned above) in
order to further reduce global, motion-related spikes in BOLD
data (Power et al. 2014; Ciric et al. 2017). To avoid motion-
related differences in the amount of data used to calculate
resting-state correlations across participants, 120 randomly
selected “good” frames of usable data (i.e., frames surviving
motion censoring) from each participant were included in fur-
ther analysis.

To quantify how motion censoring and global signal regres-
sion (GSR) affect multivariate prediction with RSFC, we per-
formed additional analyses with 1) no motion denoising (no
GSR + no frame censoring) and 2) partial motion denoising
(GSR + no frame censoring and no GSR + frame censoring).

RSFC Network Construction
For each participant, resting-state time courses were extracted
from a set of 264 previously defined regions of interest (ROIs)
covering much of the brain shown in Figure 1A (Power et al.
2011). A weighted correlation matrix representing an individual’s
RSFC was constructed by calculating the correlation between
time-courses from each pair of ROIs and normalizing these val-
ues with a Fisher transform. The group average correlation
matrix for this developmental dataset is shown in Figure 1B. The
RSFC between these 264 ROIs reveals the organization of separa-
ble functional systems (e.g., default-mode, frontoparietal, visual)
in both children and adults (Power et al. 2011; Yeo et al. 2011).

Support Vector Regression

Support vector machine (SVM) learning was used to determine
how well an individual’s chronological age can be predicted from
that individual’s pattern of RSFC. We used the Spider Machine
Learning Toolbox implemented in Matlab for SVM training and
testing. Commonly, SVM is used to test whether patterns of RSFC
can classify an individual as a part of a group, a binary label. This
approach can be extended to the prediction of continuous labels
(e.g., chronological age) using support vector machine regression
(SVR). Briefly, SVR extracts the multivariate relationship between
features (here, functional connections) and labels (here, age) from
a training set of individuals with known labels. Further description
of the parameters employed from multivariate machine learning
is provided in Supplemental Material B.

We used a 10-fold cross-validation (10-fold CV) procedure in
which 10% of the participants were removed from the training
set, a multivariate model was generated from the remaining par-
ticipants (90% of the participants), and the left out participants
were tested on the SVR-derived model. For each fold of CV, a dif-
ferent set of 10% of participants were removed from the training
set and tested on the SVR-derived model. We tested the robust-
ness of the SVR-derived models with 3 iterations of 10-fold CV (2
iterations are shown in Supplemental Material E, Fig. S3). We
also used a leave-one-out cross-validation (LOOCV) procedure for
consistency with Dosenbach et al. 2010 and to test the robust-
ness of the results across cross-validation techniques. We found
minimal differences between 10-fold CV and LOOCV (LOOCV
results are provided in Supplemental Material F, Figure S4).

The extent to which this derived model explains the label-
related variance can be determined by applying the SVR-
derived model to the features from a test individual outside of
the training set and comparing the test individual’s SVR
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predicted label and actual label. Previously, Dosenbach et al.
2010 compared several models in order to best fit the relation-
ship between the predicted ages and actual ages of individuals.
Here, we chose to use a simple, linear model in order to com-
pare predictive performance across a variety of SVR-models
built to predict different labels and built from different sets of
features. A schematic of the training and testing in SVR is
shown in Figure 1C.

Predicting an Individual’s Age
We used SVR to predict the age of each participant and deter-
mine whether there are age-related differences in individual
patterns of RSFC. Using 10-fold CV, participants were removed
from the training set and a multivariate model describing the
relationship between RSFC and age was generated in the
remaining participants. The left-out participants were then
tested on this SVR-derived model yielding a SVR-predicted age
for each participant. This process was repeated, resulting in a
predicted age for every subject. Predicted ages were then com-
pared with the true ages for each participant.

In order to identify the noise floor for prediction, we per-
muted the age labels of each participant in the training set. We
used the same machine learning approach to assess how well
SVR can use patterns of RSFC with fabricated relationships
with age. We used the same 10-fold CV procedure as described
above, but trained on the permuted age labels rather than the
actual ages.

Predicting an Individual’s Head Motion
Because of the issue of subject motion contaminating develop-
mental neuroimaging data (Power et al. 2012; Satterthwaite,

Elliott, et al. 2013), we took a conservative approach to identify-
ing potentially lurking, motion-related differences in RSFC that
might spuriously enhance our ability to predict age. We used
the same machine learning approach to determine whether
patterns of RSFC could predict measurements of an individual
participant’s head movement. Using 10-fold CV, a multivariate
model describing the relationship between RSFC and head
motion—measured as mean FD—was generated and the left
out participants were then tested on this SVR-derived model.
Specifically, mean FD was calculated on the preframe censored
data, thus quantifying the amount of movement during the
entirety of the runs included for each participant. This process
was repeated to predict each individual’s mean FD. The predicted
mean FD was then compared with the true mean FD for that par-
ticipant. Similar analyses were also conducted using mean FD
calculated on the postframe censored data, which measures the
residual head motion after denoising (Supplemental Material C).
To assess the impact of motion denoising on RSFC, multivariate
models describing the relationship between mean FD and RSFC
that did not undergo motion denoising (GSR + frame censoring)
were also generated and tested.

Prediction Across Feature Numbers
We aimed to explore how the number of features used to create
the multivariate model affects the ability to predict age and
head motion. We randomly selected functional connections
from the entire correlation matrix, sampling between 100 and
19 000 features (out of the possible 34 716) in logarithmic incre-
ments. A total of 25 random feature sets were generated for
each of the 45 feature numbers sampled. With these feature
sets, we tested how well SVR can identify patterns of RSFC

Figure 1. Overview of support vector machine learning with RSFC. (A) Regions of interest (n = 264), defined in Power et al. (2011), used to create RSFC correlation matri-

ces. Resting-state time courses were extracted from each of these regions. (B) Average resting-state functional connectivity across all participants. Correlations

between the resting-state time courses of all pairs of regions from (A) were sorted according to functional system and average across all subjects included in this

analysis. (C) Support vector regression was used to determine a multivariate model for prediction in a training set and this predictive model was evaluated by com-

paring the predicted labels and actual labels of individuals in a separate testing set. Different training labels (e.g., age, mean FD) were used to create multivariate

models to predict different characteristics of individuals using RSFC. In some cases, feature selection was applied before training and testing (for specifics, see

Fig. S2).
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related to age, head motion, and permuted age labels in order
to make predictions about individuals. Using 10-fold CV, a mul-
tivariate model describing the relationship between these
labels and RSFC in randomly selected functional connections
was generated and the left out participants were then tested on
this SVR-derived model.

Feature Selection

Feature selection is a standard approach in the field of machine
learning whose objective is to remove irrelevant features to
reduce computational burden, avoid overfitting, and potentially
improve predictive performance (Guyon and Elisseeff 2003).
Many investigators have interrogated the features derived from
feature selection—in the case of RSFC, functional connections
—facilitating prediction. The identified, reduced set of func-
tional connections has often been interpreted as meaningful to
the mechanism underlying the predicted characteristic (e.g.,
maturation, disease). We used feature selection to investigate
which functional connections carry information useful for age
prediction using both data-driven (features defined in a training
set) and hypothesis-driven (features defined a priori)
approaches. Before interpreting these identified features as
meaningful to the mechanism(s) underlying typical develop-
ment, we compared the performance of selected features to a
null model built from a matched set of randomly selected fea-
tures. Supplemental Material Figure S2 summarizes the types
of feature selection used for age prediction.

Data-Driven Feature Selection
Univariate feature ranking and selection in a training set. As a sim-
ple approach to identify the best features to predict an indivi-
dual’s age, we ranked and selected features according to the
univariate correlation between each functional connection and
age across subjects, as in Dosenbach et al. (2010). For each fold
of CV, features were ranked according to the strength of the
correlation between RSFC and age in the remaining subjects in
the training set (note: this approach is different than features
ranked according to the RSFC strength within an individual; see
RSFC Strength, below). We sampled between 100 and 19 000 top
ranked features in logarithmic increments, generated a multi-
variate model describing the relationship between age and
RSFC in these features, and tested the left out participants on
the SVR-derived models.

Matched feature set and null model comparison. We evaluated
whether these functional connections with strong age relation-
ships were the most useful for multivariate age prediction by
contrasting them with a matched set of randomly selected fea-
tures (see Prediction Across Feature Numbers). We generated a
multivariate model describing the relationship between age
and RSFC in these randomly selected features, tested the left
out participants on the SVR-derived models, and compared the
performance of top ranked features with randomly selected
features.

Hypothesis-Driven Feature Selection
Beyond identifying a set of features most related to age as
described above, we were also interested in experimentally
manipulating the information available for age prediction. We
aimed to test whether development relies upon organizing
principles of RSFC such as connection distance, the definition
of functional systems, or the strength of correlations.

Connection distance. Previously, Dosenbach et al. (2010) described
evidence that connection distance might underlie the useful-
ness of functional connections for age prediction. To compare
how functional connections of different connection distance
contribute to age prediction, we divided the resting-state corre-
lations into 10 separate windows (3471 functional connections
per window) based on the distance of the connections in tem-
plate Talairach space (computed via Euclidean volumetric dis-
tance among group ROIs). Using 10-fold CV, a multivariate
model describing the relationship between age and the RSFC in
these functional connections of a particular length (e.g., short-
range, long-range) was determined and the left out participants
were then tested on this SVR-derived model.

Matched feature set and null model comparison. We compared the
SVR performance derived from features of a particular connec-
tion length with the SVR performance derived from randomly
selected features to determine whether connection distance
underlies age prediction with RSFC. Randomly selected feature
sets were specifically matched to have the same number of fea-
tures as the 10 separate distance windows (3471 functional con-
nections). Overall, 25 randomly selected feature sets were
generated. Using 10-fold CV, a multivariate model describing
the relationship between age and the RSFC in these randomly
selected connections was determined and the left out partici-
pants were then tested on this SVR-derived model.

Functional systems. The brain is organized into functional sys-
tems (e.g., visual, default-mode, dorsal attention, frontoparie-
tal) that can be revealed with RSFC at the group (Power et al.
2011; Yeo et al. 2011) and individual (Laumann et al. 2015;
Gordon, Laumann, Glimore, et al. 2017) levels. Previously, we
and others have shown that SVM classification accuracy for
distinguishing children with developmental disorders (e.g,
Tourette syndrome (Greene, Church, et al. 2016), Autism
Spectrum Disorder (Uddin et al. 2013)) from healthy controls var-
ied by the functional system(s) used for SVM training. To compare
how functional connections from different functional systems
contribute to age prediction, we divided the resting-state correla-
tions according to the thirteen functional systems defined in
Power et al. 2011, including control systems (frontoparietal,
cingulo-opercular, salience, ventral attention, dorsal attention),
processing systems (somatomotor-body, somatomotor-mouth,
visual, auditory, memory), the default-mode system, a subcortical
system, and a cerebellar system depicted in Figure 1A (Power et al.
2011). For each system-level comparison, functional connections
within the system and functional connections between that sys-
tem and the other systems were included. Using 10-fold CV, a
multivariate model describing the relationship between age and
the RSFC in connections associated with a particular functional
system was determined and the left out participants were then
tested on this SVR-derived model.

Matched feature set and null model comparison. Performance with
each system-selective model was then compared with SVR per-
formance derived from randomly selected features matched to
have the same number of features as each functional system
(see Prediction Across Feature Numbers). Using 10-fold CV, a
multivariate model describing the relationship between age
and the RSFC in these randomly selected connections was
determined and the left out participants were then tested on
this SVR-derived model.
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RSFC strength. While strong positive resting-state correlations
have dominated most RSFC studies, strong negative functional
connections, as well as weakly positive or negative functional
connections, might also change in development and be useful
for age prediction. Previously, Bassett et al. (2012) observed that
SVM classification accuracy for distinguishing patients with
schizophrenia from healthy controls differed when separately
including features with strong positive and weakly positive
RSFC; weakly positive functional connections were more pre-
dictive than strongly positive or moderately positive functional
connections. To separately consider how functional connec-
tions of different RSFC strength contribute to age prediction, we
divided resting-state correlations within each individual into 10
separate windows based on the strength of each connection
(3471 functional connections per window). Specifically, features
were sorted by RSFC strength within each individual and a win-
dow of 10% of these functional connections were selected
(note: this is distinct from features ranked according strength
of correlation between RSFC and age; see Univariate Feature
Ranking and Selection in Training Set). For example, connec-
tions with the strongest positive RSFC per individual, regardless
of the actual correlation value, were included in the top 10%
strong positive window (i.e., 1 if present or 0 if not present).
Importantly, the actual functional connections selected for
each window depended upon each individual’s correlation
matrix and varied across individuals. The lack of correspon-
dence in the location of these functional connections across
individuals is the information used for age prediction. For exam-
ple, a functional connection that is in the top 10% strong positive
window for one subject but not another would provide useful
information for age prediction, while a functional connection
that is in the top 10% strong positive window across all partici-
pants would not. Using 10-fold CV, a multivariate model describ-
ing the relationship between age and the functional connections
of a particular correlation RSFC strength (e.g., strong positive,
weak, strong negative) was determined and the left out partici-
pants were then tested on this SVR-derived model.

Matched feature set and null model comparison. The performance
of these correlation-magnitude models was compared with a
null model of features matched in number but randomly sampled
from the distribution of resting-state correlations. Specifically, fea-
tures were ranked by correlation magnitude within each individual,
as before, but a random set of 10% of these ranks were selected.
Importantly, this random set of ranks was consistent across sub-
jects. Overall, 25 randomly selected feature sets were generated.
Using 10-fold CV, a multivariate model describing the relationship
between age and the location of these randomly selected connec-
tions of was determined and the left out participants were then
tested on this SVR-derived model.

Intercorrelation Among Features in Feature Sets
The usefulness of a feature set can be reduced if there is a large
amount of intercorrelation among features (Guyon and
Elisseeff 2003). Correlated features are likely to provide redun-
dant information for multivariate machine learning, increasing
the likelihood of suboptimal predictive performance. Thus, we
tested whether the feature sets described above (i.e., data-
driven and hypothesis-driven feature selection) were more
intercorrelated than feature sets with randomly selected fea-
tures. For each feature set, we calculated the correlation
between the RSFC values in each pair of functional connections

across all individuals. Using a matched number of randomly
selected functional connections, we calculated the intercorrela-
tion in those feature sets as well. Because differences in both
the mean (Fig. S6B) and shape (Fig. S6D) of this intercorrela-
tion distribution indicate an increased number of intercorre-
lated features (see Supplemental Material H), we computed
the proportion of feature pairs with an intercorrelation greater
than r = 0.2 (2 standard deviations greater the mean of in the
intercorrelation of features in the full correlation matrix) in
order to quantify the amount of redundancy in each feature
set. To further explore the impact of redundancy among func-
tional connections on age prediction, we employed the Fast
Correlation-Based Filter (Yu and Liu 2004) that aims to reduce
the number of collinear features. With this approach, features are
iteratively removed from a feature set if correlated with other,
stronger (more correlated with age) features above a predeter-
mined threshold. More details are provided in Supplemental
Material H.

Results
After Motion Denoising, Individual Head Motion Cannot
be Predicted From RSFC, While Age Can

First, we aimed to determine whether there was information
available to predict measurement of head movement (mean FD)
in RSFC before and after motion denoising. Motion-related artifact
was minimized with GSR and conservative frame censoring
(Power et al. 2014; Ciric et al. 2017). SVR using a 10-fold CV proce-
dure was used to test the multivariate relationship between RSFC
and head motion as well as the multivariate relationship between
RSFC and age. As is shown in Figure 2A,B, age was successfully
and robustly predicted at the individual level in data with and
without motion denoising. In contrast, individual measurements
of head motion could not be successfully predicted after reducing
motion-related artifact. The amount of variance in RSFC explained
by age or head motion can be quantified by comparing the true
labels and SVR-predicted labels for each participant. Using the
resting-state correlations between the full set of 264 ROIs, 57% of
the variance in individual RSFC was explained by age with motion
denoising (r = 0.75, P < 0.001, R2 = 0.57), while only 44% was
explained by age without motion denoising (r = 0.66, P < 0.001, R2

= 0.44). Alternatively, 50% of the variance in RSFC was explained
by individual head movement before reducing motion-related arti-
fact (r = 0.71, P < 0.001, R2 = 0.50), while only 4% was explained by
head motion after GSR and conservative frame censoring (r = 0.2,
P = 0.03, R2 = 0.04).

Additionally, after sufficient motion denoising, SVR-
predicted ages were less correlated with an individual’s head
movement. If individual head motion and age cannot be disen-
tangled, predicted ages may still be confounded by motion-
related variance in RSFC. Before motion denoising, the ages
predicted from the multivariate patterns in RSFC were nega-
tively correlated with mean FD (r = −0.44, P < 0.001, R2 = 0.20).
After reducing motion-related artifact, the relationship
between RSFC-predicted ages and individual mean FD was
markedly reduced (r = −0.32, P < 0.001, R2 = 0.10).

To determine the impact of different components of motion
denoising on the multivariate effects of head motion on RSFC,
we tested how well patterns of partially denoised RSFC (GSR
alone, frame censoring alone) could be used to predict mea-
surements of individual head movement. Of the steps that best
remove systematic differences in RSFC, GSR alone eliminated
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most multivariate information related to an individual’s head
movement (R2 = 0.04). Frame censoring alone also reduced mul-
tivariate effects of head motion as measured by mean FD
across all data (preframe censoring mean FD, R2 = 0.10).
However, frame censoring alone was not sufficient to reduce
the multivariate effects of residual head motion after frame cen-
soring (postframe censoring mean FD, R2 = 0.20, Supplemental
Material C). Figure 2C shows that, while age information is

preserved, information about individual-level head movement is
drastically reduced after GSR or after frame censoring.

In order to further interrogate the robustness of multivariate
information related to age and head motion in RSFC, we tested
the multivariate prediction of age and mean FD across many
different feature sets. SVR performance for predicting age
increased with the number of features (i.e., functional connec-
tions) included in training and testing as shown in Figure 2D.

Figure 3. RSFC with strong, univariate age relationships predict age no better than randomly selected RSFC with multivariate SVR. (A) An example of the top ranked

features (Consensus Features from 10%, 3471 features) across training sets. The correlation between RSFC and age was generated for these features and sorted accord-

ing to functional systems. (B) Performance of SVR-derived models built with top ranked features and randomly selected features using different numbers of features.

Feature sets were selected in logarithmic increments.

Figure 2. Motion denoising affects whether RSFC predicts head motion, but not age. (A) Predicted age (top) and predicted mean FD (bottom) of individuals in the test-

ing set compared with the true chronological age and true mean FD of each individual. Predictions were generated from RSFC before motion denoising. (B) Predicted

age (top) and predicted mean FD (bottom) of individuals in the testing set compared with the true chronological age and true mean FD of each individual. Predictions

were generated from RSFC after motion denoising. (C) Age prediction (left) and mean FD prediction (right) with RSFC that has undergone no motion denoising, partial

motion denoising, and full motion denoising. (D) Performance of SVR-derived models across feature sets with different number of features. A total of 25 feature sets

were created by randomly selecting functional connections in 45 logarithmic increments.
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As an experimental control, the multivariate relationship
between RSFC and permuted age labels was derived with SVR
in a training set and used to predict the age of test individuals.
As expected, performance of this experimental control model
was poor (r = 0.08, P = 0.183, R2 = 0.006). While SVR performance
for predicting age far surpassed this experimental control, the
performance predicting mean FD with adequately denoised
RSFC did not outperform the experimental control.

Top Ranked Functional Connections Predict an
Individual’s Age, but not Better Than Random
Functional Connections

Using data-driven feature selection, we aimed to determine a set
of features that optimally predict age with SVR. Multivariate
models were built with the functional connections with the
strongest correlation with age within each training set (e.g., Fig.
3A: Consensus Features in Top Ranked 10%). Features with
strong age relationships in the training set were able to predict
the age of test individuals reasonably well, peaking at 57% of the
variance explained. Figure 3B shows how the amount of develop-
mental variance explained in the testing set depends upon the
number of features included in the model. Models built from a
limited set of top ranked features matched, but never predicted
age better than, the model build from the full correlation matrix
(i.e., 57% variance explained) even though features weakly
related to age were removed. Furthermore, the SVR performance
of top ranked features was not significantly better than the per-
formance of models built from randomly selected features of the
same number, as shown in Figure 3B. Some feature sets of inter-
mediate number appear to produce marginally better age predic-
tion than randomly selected features, suggesting that there
might be a specific range of features which facilitate age predic-
tion. However, further investigation of top ranked features with a
different cross-validation protocol (training set of 90 and testing
set of 32, instead of 10-fold CV) indicates the performance of top
ranked features does not differ from randomly selected features
across feature numbers (see Supplemental Material G). Taken
together, these different validation approaches indicate that the
functional connections that are most correlated with age do not
uniquely or especially facilitate age prediction.

After Motion Correction, Connection Length Does not
Contribute to Improved Age Prediction

Given previous suggestions of a local-to-distributed develop-
ment of brain networks (Fair et al. 2009; Supekar et al. 2009;
Dosenbach et al. 2010), we next aimed to compare how func-
tional connections of different length (e.g., short-range, long-
range) contribute to age prediction. Multivariate models were
built with features defined by connection distance. These mod-
els were able to predict the age of a left out individual well (R2 =
0.49 ± 0.04; Fig. 4). However, SVR performance of features
selected by connection length was not better than the perfor-
mance of models built from a matched set of randomly
selected features. Additionally, prediction was uniform across
different connection distances, with neither short- nor long-
range connections facilitating age prediction in comparison to
mid-range connections. Age prediction in these feature sets,
while comparable to age prediction in randomly selected fea-
ture sets, did not depend on the length of the functional con-
nections used to comprise the SVR-derived model.

Different Functional Systems can Predict Age, but
Poorer Than Distributed Features

We next aimed to compare how connections from different
functional systems contribute to age prediction, given evidence
that brain systems may develop at different rates (Gogtay et al.
2004). Multivariate models were built by selecting features from
each functional system individually. These models were able to
predict age to some extent (Fig. 5). However, prediction perfor-
mance varied largely as a function of the number of features
within each system. Notably, the SVR performance of features
selected from each functional system was worse than the

Figure 4. After motion correction, connection length does not contribute to age

prediction. Performance of SVR-derived models built with features selected by

connection length and features selected randomly (10%, 3471 features).

Figure 5. No single functional system predicts age better than randomly

selected functional connections. Performance of SVR-derived models built with

features selected from single functional systems and features selected ran-

domly (matched by size).
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performance of models built from randomly selected features
that were distributed across multiple functional systems. Thus,
functional connections from individual functional systems carry
less information to predict age than functional connections ran-
domly distributed across the brain and the differences in age
prediction performance between different functional systems
vary largely based on system size rather than system identity.

Strong Positive and Strong Negative Connections
Predicts Age Better Than Weak Connections

Finally, we compared how connections from different parts of
an individual’s correlation distribution (i.e., strong positive,

weak, strong negative) contribute to age prediction, given sug-
gestions that even weak magnitude RSFC can improve predic-
tion in disease states (Bassett et al. 2012). The observed
location of strongly positive, weak, and strongly negative RSFC
across all individuals in the developmental dataset is shown in
Figure 6A–C. Strong negative RSFC was most frequently found
between the DMN and other systems, and the strong positive
RSFC was most frequently found within systems along the
diagonal across all individuals. Weak RSFC was present in more
variable locations across individuals. Multivariate models based
on the location of strong positive and strong negative RSFC
within an individual were able to predict age well (strong posi-
tive R2 = 0.54; strong negative R2 = 0.47). In contrast,

Figure 6. RSFC strength contributes to age prediction. (A) The distribution of strong negative resting-state correlations across all individuals in the developmental

dataset. (B) The distribution of strong positive resting-state correlations across all individuals in the developmental dataset. (C) The distribution of weak zero resting-

state correlations across all individuals in the developmental dataset. (D) Performance of SVR-derived models built with features selected by correlation strength and

features selected randomly from the correlation distribution (10%, 3471 features).
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multivariate models built from sets of features with weak func-
tional connections were not able to predict age well as depicted
in Figure 6D. The SVR performance of features with strong posi-
tive and strong negative RSFC was better than the performance
of models built from a matched set of randomly selected func-
tional connections.

Some Feature Sets Contain More Redundant Features
Than Randomly Derived Feature Sets

Intercorrelated features may hinder multivariate age prediction
because they may provide redundant information. Figure 7
compares the amount of intercorrelation among different fea-
ture sets and demonstrates that age-correlated functional con-
nections are consistently more intercorrelated across subjects
than groups of randomly selected features. Additionally, functional
systems, defined in part by the consistent RSFC relationships across
individuals, contain features that are more intercorrelated than
matched sets of randomly selected features, as might be expected.
Thus, it is possible that intercorrelations among feature sets may
reduce the power of age-correlated and functional system feature
sets to predict age. For further characterization of the intercorrela-
tion in these feature sets, see Supplemental Material H.

Discussion
Motion Denoising Eliminates the Multivariate Effects of
Head Motion on RSFC, While Preserving Age
Information

In this work, we have shown that denoising methods to mini-
mize motion artifact (Ciric et al., 2017)—including both GSR and
frame censoring—is necessary to remove multivariate effects
of head motion on RSFC. Without motion denoising, patterns of
RSFC could be used to successfully predict measurements of
head movement (Fig. 2A). After motion denoising, we were

unable to predict individual variability in head movement with
RSFC, while still successfully predicting age (Fig. 2B). Thus, even
after reducing motion-related information, RSFC carries infor-
mation relevant to typical development, validating previous
claims (Dosenbach et al., 2010) and supporting more recent
follow-ups (Fair et al. 2013; Satterthwaite, Wolf, et al. 2013).
While these previous studies have shown that age can still be
predicted from RSFC after reducing motion-related artifact, our
results extend such findings in a critical way by showing that
there is limited lingering information about head movement as
estimated with mean FD in RSFC after motion denoising.

RSFC can Predict an Individual’s Age and may be a
Useful Indicator of Developmental Progress

In this work, we were able to well predict an individual’s age from
RSFC, explaining 57% of the developmental variance across parti-
cipants. Our results are comparable to previous findings of age
prediction with multivariate machine learning using other mea-
surements of the developing brain such as voxel based morphom-
etry of T1-weighted scans ((Franke et al. 2012), R = 0.93, R2 = 86%),
volume of grey matter, white matter, and lateral ventricles ((Erus
et al. 2015), R = 0.89, R2 = 79%), and regional cortical thickness
((Khundrakpam et al. 2015), R = 0.84, R2 = 71%). Additionally, mea-
surements of structural connectivity, such as fractional anisotropy
and diffusivity obtained with diffusion tensor imaging ((Erus et al.
2015), R = 0.89, R2 = 79%), have also been used to successfully pre-
dict an individual’s age with multivariate machine learning.
Recently, task-related FC, a measurement of the transient changes
in regional coherence during task performance, has been used to
predict age with moderate accuracy, explaining 42% of variance
related to age in a validation set (Rudolph et al. 2017). Approaches
that combine information from multiple imaging modalities (T1,
T2, and diffusion weighted imaging (Brown et al. 2012), R = 0.96, R2

= 92%) have been shown to achieve the highest prediction perfor-
mance. However, there is increasing evidence that head motion in
the scanner systematically affects measurements of cortical thick-
ness, grey matter volume (Reuter et al. 2015), and fractional
anisotropy (Ling et al. 2012; Yendiki et al. 2014) as well as RSFC.
Thus, the reported performance of multivariate age prediction
with structural measurements may also be contaminated by head
motion, and require additional validation.

While we (and others (Fair et al. 2013; Satterthwaite, Wolf, et al.
2013)) have shown that RSFC carries substantial information about
the development of an individual (R = 0.75; R2 = 0.57), not all char-
acteristics of individual brain maturity are likely, nor anticipated,
to be captured in resting-state correlations. For example, we know
that brain size changes systematically with age (Giedd and
Rapoport 2010). The distinctive utility of RSFC may lie in identifying
the functional underpinnings of atypically developing individuals.
RSFC, a measurement of the statistical history of co-activation
across an individual’s lifespan (Fox and Raichle 2007; Dosenbach
et al. 2008), may be disrupted in an abnormal developmental tra-
jectory. Because RSFC is more closely related to function thanmea-
sures of brain structure, differences in RSFC might be a particularly
useful indicator of dysfunction in child brain development.

After Reducing Motion-Related Artifact, Age Prediction
With RSFC Does not Support the Local-to-Distributed
Hypothesis of the Development of RSFC

Earlier studies of the development of RSFC organization suggested
that as an individual matures, resting-state correlations shift
from local, short-range connections to distributed, long-range

Figure 7. Proportion of intercorrelated features in the tested feature sets.

Proportion of feature pairs in the tested feature set with intercorrelation greater

than in the full correlation matrix (2 standard deviations greater than the

mean; r > 0.2). The mean and 95% confidence interval of this measure of inter-

correlation was generated for the top ranked features defined in each fold of

10-fold CV and for the randomly selected features across feature numbers. The

intercorrelation was also generated for feature sets with functional connections

from single functional systems.
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connections. This evidence was appealing because it agreed with
neurobiological evidence of the continued myelination of long-
range pathways into adolescence and adulthood (Barnea-
Goraly et al. 2005). However, motion artifacts also amplify
short-range RSFC and reduce long-range RSFC. While earlier
attempts at age prediction with RSFC supported the local-to-
distributed developmental hypothesis (Fair et al. 2009; Supekar
et al. 2009; Dosenbach et al. 2010), we did not find evidence for
distance-dependence in predicting age after reducing motion-
related artifact. Short-range and long-range connections pre-
dicted age similarly to mid-range connections and randomly
selected functional connections (Fig. 4). Other evidence based
on network organization of RSFC also contradicts the local-to-
distributed development of RSFC after correcting for individual
head motion (Fair et al. 2013; Marek et al. 2015).

Age is Best Predicted by Strong Positive and Strong
Negative RSFC Within an Individual

Because the location of strong positive and strong negative
RSFC is conserved across development (Fig. 6A,B), these
resting-state correlations likely represent important informa-
tion about brain functioning in individuals. In most individuals
in our sample, strong positive RSFC was between ROIs within
functional systems and strong negative RSFC was between
functional systems involved in the engagement/disengagement
from tasks (e.g., DMN, FP, CO) (Fox et al. 2005). Importantly,
despite the fact that these connections appear highly con-
served across individuals, individual differences in the location
of strong RSFC predict age well (R2 = 0.54 and 0.47) and better
than weak/moderate RSFC or randomly selected connections.
While the location of weak and moderate RSFC varies more
across individuals than strong RSFC, intersubject variance
appears to show a negligible relationship with age (average R2 =
0.043), and may reflect the noisy nature of these functional con-
nections. The utility of strong-positive and strong-negative
functional connections for age prediction might support previ-
ous contentions of network segregation in development (Fair
et al. 2007; Satterthwaite, Wolf, et al. 2013). Strong within-
network and between-network connections may be modified
over the course of development in order to refine functional
network organization, yet further research is necessary to
directly test such claims.

Using similar approaches, others have argued that the weak
resting-state correlations contain information relevant for pre-
diction of other characteristics of an individual, such as I.Q.
and psychiatric diagnosis (Bassett et al. 2012; Santarnecchi
et al. 2014). We contend that the disparity in these results is
related to effectively addressing motion-related artifact using
volume censoring and GSR. While GSR removes the great
majority of the differences in RSFC related to head motion
(Power et al. 2014; Ciric et al. 2017), this procedure also shifts an
individual’s resting-state correlation distribution so that it
becomes zero-centered and necessarily increases the number
of negatively correlated functional connections (Saad et al.
2012; Power et al. 2014). Thus, previously described weak (posi-
tive or negative) connections without GSR may be equivalent to
the strong negative resting-state correlations after GSR described
here. In order to assess the importance of these connections in
predicting an individual’s age (or any characteristic), it is neces-
sary to address motion-related artifact and to then demonstrate
that the cleaned data are unable to predict that individual’s
head movement. As GSR eliminated most of the multivariate
effects of head motion on RSFC, it is possible that weak

connections without GSR could also predict measurements of
head movement.

Broad Sampling of Functional Connections Yields Better
Age Prediction Than Directed Sampling due to 1) the
Distributed Nature of Information and 2) the
Redundancy of Relevant Features

Because RSFC was able to predict an individual’s age with SVR
after reducing motion-related artifact, we aimed to interrogate
the specific functional connections facilitating age prediction to
better understand the mechanisms underlying the develop-
ment of RSFC. We attempted to interrogate the features rele-
vant to age prediction with directed, data-driven (i.e., top
ranked relationships with age) and hypothesis-driven (i.e.,
functional systems) feature selection schemes. Unexpectedly,
we found that directed sampling of functional connections
yielded age prediction that was no better or, in the case of func-
tional systems, worse than that obtained with a broad sam-
pling of functional connections (i.e., random feature selection)
(Figs 3B and 5). We have found 2 related properties of this
developmental dataset that may contribute to the poorer per-
formance of directed sampling, addressed below.

Developmental Differences in RSFC are Distributed Across Many
Functional Systems
We found that information in RSFC related to age appears to be
unevenly distributed in a structured way across functional sys-
tems (enriched in some blocks: e.g., many functional connec-
tions within somatomotor–visual have a strong positive
correlation with age, see Fig. 3A), but resides in all functional
systems. Because of the distributed nature of age-related RSFC,
there may be many sets of features that are able to predict age
well, even when randomly selected. Multivariate approaches
are particularly well-suited to use patterns of features with var-
iable age relationships to predict age (Jimura and Poldrack
2012). Thus, in random feature selection, by chance, relevant
features across multiple functional systems are often captured,
which enables robust age prediction.

Adding to the evidence that developmental differences in
RSFC are distributed across many functional systems, we found
that each functional system predicted age worse than ran-
domly selected features distributed across functional systems
(Fig. 5). Poorer performance of features associated with a single
functional system suggests that information from multiple
functional systems is necessary to achieve optimal age predic-
tion. We did find that age prediction differed between func-
tional systems; however, whether these differences are related
to the usefulness of information from a given functional sys-
tem or the number of features associated with that system
remains unclear. If the mechanism by which RSFC develops is
not system-dependent, then larger functional systems may be
more likely to capture relevant information for age prediction
by chance. Explanation-driven approaches beyond those
employed in the present study may be better able to identify
the specific brain systems or pieces of specific systems that
change over the course of development.

While a significant portion of the extant developmental cog-
nitive neuroscience literature has focused on the maturation of
specific brain regions (e.g., the prefrontal cortex (Casey et al.
2005)) or specific functional networks (e.g., the default mode
(Supekar et al. 2010)), the present results suggest that investiga-
tions of the maturation of functional neuroanatomy might be

Evaluating the Prediction of Brain Maturity From Functional Connectivity Nielsen et al. | 11
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/advance-article-abstract/doi/10.1093/cercor/bhy117/5025421 by W
ashington U

niversity, Law
 School Library user on 12 N

ovem
ber 2018



more usefully addressed by a whole-brain or large-scale net-
work approach. From a complex network perspective, the obser-
vation that developmental changes in functional connections
are distributed across multiple systems may not be surprising.
In the evolution of many complex networks, connections are
modified across functional modules such that global communi-
cation is optimized and integrative hubs are created (Solé et al.
2002). It is possible that the distributed nature of developmental
differences in RSFC reflects a growth mechanism that optimizes
global communication rather than enhancing a single functional
system. The genetics literature offers an interesting analogy
with the recently proposed “omnigenic” model for the inheri-
tance of complex traits. In this model, signal associated with
complex traits is spread out across the genome (Boyle et al.
2017). Thus, one might predict that a complex characteristic of
an individual, like maturity, could be supported by distributed
changes in network functioning. An interesting future direction
may be to determine whether more complex measures of net-
work organization carry information useful for individual-level
age prediction.

Many Functional Connections That are Relevant to Development
Provide Redundant Information for Age Prediction
Although distributed across many functional systems, top
ranked features (i.e., functional connections that are most
strongly correlated with age) did not predict age better than
randomly selected features with multivariate machine learn-
ing, as we had expected (Fig. 3B). By definition, these functional
connections have, on average, stronger relationships with age
than randomly selected functional connections, but were no
more useful for age prediction. We believe that the usefulness
of top ranked features was limited by the intercorrelated infor-
mation carried by these features. Even if 2 features can each
predict age well individually, there is little additional informa-
tion contributed to facilitate age prediction if the pair of features
are highly correlated, as they may use the same underlying infor-
mation for age prediction (Guyon and Elisseeff 2003). Given that
the top ranked features were much more highly intercorrelated
across participants than randomly selected features (Fig. 7), this
redundancy may explain why these features predicted age no bet-
ter than randomly selected features. We tested this hypothesis by
removing redundant features using a Fast Correlation-Based Filter
(Yu and Liu 2004) and found that age prediction performance
decreased more slowly when removing redundant features than
when randomly removing features (Fig. S7).

One likely source of redundancy is the network organization
of RSFC. By definition, functional systems identified with RSFC
are composed of regions with similar patterns of connectivity.
The patterns of connectivity that define functional systems are
largely conserved across individuals (Power et al. 2011; Mueller
et al. 2013; Wang et al. 2015; Gordon et al. 2018). The redun-
dancy within systems may also explain why functional connec-
tions from a single system cannot predict age as well as
randomly selected functional connections that sample multiple
systems (Fig. 5). The redundancy of features selected from
functional systems is likely not unique to age prediction and
might affect prediction of other characteristics of individuals
with RSFC using multivariate machine learning.

While redundancy reduces the usefulness of a feature set
for age prediction, it does not reduce the relevance of these fea-
tures to the development of RSFC. Feature selection methods
which identify orthogonal features (e.g., Partial Least Squares
Regression, Principal Component Regression) might be able to

produce a set of features that is more useful for age prediction
than randomly selected features, though it may be difficult to
interpret the neurobiological principles underlying the impor-
tance of these features in a straightforward manner. We found
that feature selection aimed at reducing collinearity (Fast
Correlation-Based Filter) did not yield age prediction that was
better than the full set of features (Fig. S7) indicating that
removing redundant information does not improve perfor-
mance. Furthermore, because of the redundancy present in this
developmental dataset, there are likely many interchangeably
and equally useful sets of features. While multivariate machine
learning may not be the best approach for determining a single
set of functional connections underlying the typical develop-
ment of RSFC, we have shown that it is quite robust and power-
ful, predicting an individual’s age well from many different
subsets of functional connections.

Evaluating the Utility of Multivariate Prediction With
RSFC

Many researchers use multivariate machine learning in RSFC
with the intent to make accurate predictions about individuals
and to interrogate the neurobiological mechanism(s) underly-
ing a predicted characteristic. We have shown that RSFC pro-
vides a robust neurobiological measurement of an individual,
sufficient to make predictions about that individual’s chrono-
logical age with relatively high accuracy even, notably, after
correcting for systematic differences in RSFC related to subject
head motion. This observation suggests that individual age pre-
diction with RSFC could provide useful diagnostic information
about the brain maturity of individuals with developmental
delay or other developmental disorders—a feat that many
group-level descriptions of brain development may not be able
to provide. More generally, this observation demonstrates the
capacity to make predictions about an individual based on pat-
terns of RSFC.

However, we have also shown that our ability to interrogate
the specific features facilitating prediction in the hopes of under-
standing the neural mechanisms underlying brain development is
somewhat limited. Identifying a unique set of functional connec-
tions that carry information useful for age prediction with RSFC is
difficult due to the intercorrelated nature of RSFC and the distrib-
uted nature of developmental differences in RSFC, as discussed
above. Thus, both data-driven and hypothesis-driven feature
selection were unable to reveal functional connections that pre-
dict age better than the full set of features; removing potentially
irrelevant features did not boost predictive performance.
Importantly, relative to other investigations, we evaluated the per-
formance of selected features to a null model built from a
matched set of randomly selected before interpreting features as
meaningful to the mechanism underlying typical development.
Here, most sets of selected features (excluding strong positive and
strong negative RSFC; see Fig. 6D) did not predict age better than
the randomly selected null, indicating that these functional con-
nections, while useful for prediction, are not exclusively meaning-
ful nor indicative of a unique solution to age prediction from
RSFC. Our inability to identify specific features that predict age
does not mean that machine learning approaches cannot be used
to identify specific features that contribute to other group differ-
ences (e.g., disease status). However, the identified features should
be tested against an appropriate null model before making claims
about the unique utility of a set of features for prediction and
intercorrelations among features should be carefully evaluated
during interpretation.

12 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhy117/5025421 by W

ashington U
niversity, Law

 School Library user on 12 N
ovem

ber 2018



Multivariate machine learning models are built to make pre-
dictions, and can only test hypotheses about neurobiological
mechanisms indirectly. Both approaches that make individual-
level predictions and those that test group-level differences are
important to our understanding of typical and atypical develop-
ment. Multivariate prediction complemented by alternative
approaches directed at more mechanistic questions (e.g.,
group-level studies, highly sampled individuals, within-subject
longitudinal studies) will likely yield the best mechanistic
understanding of typically and atypically developing indivi-
duals. Here, we demonstrate that measurements of functional
neuroanatomy with RSFC are sufficiently robust to make
individual-level predictions of maturity in typical development
and anticipate that these characterizations may have future
clinical utility in making individual-level predictions about
atypical development.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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